

Allen & Major Associates, Inc.

RESIDENTIAL DEVELOPMENT 159 TEMPLE STREET NASHUA, NEW HAMPSHIRE STORMWATER MANAGEMENT PLAN

DATE PREPARED May 30, 2019 Revised June 5, 2019

October 18, 2019

APPLICANT:

ZJBV Properties, LLC c/o Joseph's Equipment 300 Gay Street Manchester, New Hampshire 03103

PREPARED BY: Allen & Major Associates, Inc. 400 Harvey Road Manchester, New Hampshire 03103

A&M PROJECT NO.: 2596-01

STORMWATER MANAGEMENT PLAN

RESIDENTIAL DEVELOPMENT 159 TEMPLE STREET – NASHUA, NH

APPLICANT:

ZJBV PROPERTIES, LLC C/O JOSEPH'S EQUIPMENT 300 Gay Street Manchester, New Hampshire 03103

PREPARED BY:

Allen & Major Associates, Inc. 400 Harvey Road Manchester, NH 03103

A&M PROJECT #2596-01

Table of Contents

1 OVERVIEW

- 1.1 EXECUTIVE SUMMARY
- 1.2 SITE LOCATION AND DESCRIPTION
- 1.3 EXISTING SITE CONDITIONS
- 1.4 PROPOSED SITE CONDITIONS

2 **DISCUSSION**

- 2.1 METHODOLOGY
- 2.2 PEAK DISCHARGE RATES
- 2.3 PERFORMANCE STANDARDS
- 2.4 EXPLANATION OF DRAINAGE SYSTEM

3 FIGURES

- 3.1 FIGURE 1 USGS MAP
- 3.2 FIGURE 2 AERIAL MAP
- 3.3 FIGURE 3 NRCS SOILS MAP
- 3.4 FIGURE 4 FLOOD INSURANCE RATE (FIRM) MAP

4 **PRE-DEVELOPMENT DRAINAGE CALCULATIONS**

- 4.1 EXISTING WATERSHED PLAN
- 4.2 EXISTING HYDROCAD[©] WORKSHEETS

5 **POST-DEVELOPMENT DRAINAGE CALCULATIONS**

- 5.1 PROPOSED WATERSHED PLAN
- 5.2 PROPOSED HYDROCAD[©] Worksheets

6 APPENDIX

- 6.1 **OPERATION AND MAINTENANCE**
- 6.2 NHDES AOT WORKSHEETS
- 6.3 WATER QUALITY UNIT SIZING (CONTECH)
- 6.4 TSS WORKSHEETS
- 6.5 SITE EVALUATION REPORT AND INFILTRATION CALCULATIONS
- 6.6 HYDROLOGIC SOIL PLANS
- 6.7 SITE SPECIFIC SOIL SURVEY REPORT
- 6.8 NATURAL HERITAGE RESPONSE LETTER
- 6.9 SURFACE WATER IMPAIRMENT MAP
- 6.10 Illicit Discharge Compliance Statement
- 6.11 PIPE SIZING CALCULATIONS
- 6.12 EXTREME PRECIPITATION TABLES
- 6.13 AOT APPLICATION & AOT PERMIT

SECTION 1.0

PROJECT OVERVIEW

1.0 OVERVIEW

1.1 EXECUTIVE SUMMARY

The purpose of this drainage report is to provide a detailed review of the stormwater runoff, both quality and quantity, as it pertains to the existing and proposed developed conditions. This report will show by means of narrative, calculations and exhibits that appropriate best management practices have been implemented into the design to mitigate the impacts from the proposed development. This report and following tables demonstrate that there is no increase in total peak rate of runoff and discharge volume from the site for all design storm events.

ANALYSIS POINT #1 (Flow to Municipal)								
2-Year 10-Year 50-Year								
Existing Flow (CFS)	3.45	5.30	8.07					
Proposed Flow (CFS)	0.00	0.47	2.97					
Change (CFS)	-3.45	-4.83	-5.10					
Existing Volume (CF)	11,512	18,109	28,112					
Proposed Volume (CF)	27	1,408	12,077					
Change (CF)	-11,485	-16,701	-16,035					

ANALYSIS POINT #2 (Flow to Tracks)									
2-Year 10-Year 50-Year									
Existing Flow (CFS)	5.30	9.27	15.26						
Proposed Flow (CFS)	0.00	0.00	3.98						
Change (CFS)	-5.30	-9.27	-11.28						
Existing Volume (CF)	16,559	29,207	49,179						
Proposed Volume (CF)	0	0	2,857						
Change (CF) -16,559 -29,207 -46,322									

TOTAL								
2-Year 10-Year 50-Year								
Existing Flow (CFS)	8.75	14.57	23.33					
Proposed Flow (CFS)	0.00	0.47	6.95					
Change (CFS)	-8.75	-14.10	-16.38					
Existing Volume (CF)	28,071	47,316	77,291					
Proposed Volume (CF)	27	1,408	14,934					
Change (CF)	-28,044	-45,908	-62,357					

1.2 SITE LOCATION AND DESCRIPTION

The overall project site is comprised of two parcels totaling approximately 4 acres. The parcels are listed on the City of Nashua Assessors Map 39, as lots 31 and 38, and have an address of 159 Temple Street. The property is accessed from existing curb cuts on Temple Street and Bridge Street. The proposed development is to be accessed from the existing curb cuts and one additional curb cut along Temple Street.

The existing parcels are developed and currently are used for construction storage and material stockpile. The site is primarily all pavement with three buildings to be razed. The site is surrounded by existing multi-family dwellings to the west, overgrown decommissioned train tracks the east, and an auto shop to the north. The existing tract of land is relatively flat with elevations ranging from 119 to 121 throughout the subject parcel.

The proposed development consists of the construction of two connected multi-family buildings and associated parking. The buildings will total 168 dwelling units with 252 parking spaces proposed. Building 2 is proposed to have ground floor parking, and Building 1 is proposed to have amenity space within the ground floor.

The underlying soils have been mapped by the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS), and include:

Ur	Urban Land	-
UdA	Udipsamments, nearly level	А
WnC	Windsor- Urban land complex, 3 to 15 percent slopes	А

Additional soil information is provided within NRCS Soil Report within the appendix of this report. Based upon the NRCS soil report the project site is classified as Ur (Urban Land). A site-specific soil survey was performed by TES Environmental Consultants, L.L.C, on April 24, 2019 to determine the on-site soil classification. It was determined that the on-site soils are excessively draining and consistent with the surrounding soils found within the NRCS Soil Report. The saturated hydraulic conductivity (Ksat) rate of the surrounding soils was used for the infiltration rate on-site. The average Ksat value of the Wnc and Uda soils is 95.9 micrometers per second. This value was converted to 13.6 inches per hour, and divided by a factor of safety of 2 to achieve the design infiltration rate of $6.79 \approx 6.5$ inches per hour. The site-specific soil survey was used for determining the Hydrologic Soil Group for the development. Please see section 6.5 for the Hydrologic Soil Plans used for the drainage design. The TES Environmental Consultants survey classified the onsite soil as the following:

Symbol	Soil Taxonomic Name	Hydrologic Soil Group
400B/ abaaa	Udorthents, sandy, 0-8% slopes	А
400B/hbhaa	Udorthents, sandy, 0-8% slopes	А

A stormwater analysis has been performed for two project site situations. The first analysis consists of the existing site conditions and the second consists of the proposed site conditions. There are two study points at the project boundaries which the stormwater flows were analyzed. One study point is the contributing flow to the municipal system, and the second study point is the flow directed towards the tracks along the eastern property line. The study points and contributing watersheds are further outlined in the accompanying text and calculations.

Site Data for Stormwater Modeling

The proposed project will disturb approximately 165,000 sf. This disturbance includes the construction of buildings, concrete areas, pavement area, and parking, and stormwater installations.

The proposed watershed is comprised of approximately 127,741+/ square feet of impervious (a decrease of 18,760 sf +/- from the pre-development conditions), including gravel drive, gravel parking, roofs and concrete. Rainfall data used for modeling the stormwater runoff was derived from the "Extreme Precipitation Tables" from the Northeast Regional Climate Center at Cornell University. The storm events were broken down for the 2, 10, and 50-year storms.

1.3 EXISTING SITE CONDITIONS

Stormwater runoff exits the site to two different study point locations. In order to exhibit no increase in runoff to these points, stormwater runoff flows were analyzed at two specific "Study Points." The included Pre-Development Watershed Plan (WS-1) outlines the boundaries and contributing watershed for the Study Points.

- 1. Study Point 1: This study point examines the contributing flow to the municipal combined sewer system. The contributing sub catchments E-1 and E-4 are primarily pavement ground cover. The stormwater which flows to this study point will enter the municipal combined sewer system via an existing drain inlet located adjacent to Union Street which flows west towards Armory Street.
- 2. Study Point 2: This study point is located along the eastern property line. This study point analyzes the contributing flows to the existing train tracks along this entire property line. Existing sub catchments E-2 and E-3 direct flow towards this study point. These sub catchments have primarily paved and compacted gravel ground cover.

	Pre-Development							
Analysis	Inflow area (sf)	2yr Storm		10yr Storm		50yr Storm		
Point		Flow (cfs)	Volume (cf)	Flow (cfs)	Volume (cf)	Flow (cfs)	Volume (cf)	
SP1	53,537	3.45	11,512	5.30	18,109	8.07	28,112	
SP2	111,778	5.30	16,559	9.27	29,207	15.26	49,179	
TOTAL=	165,315	8.8	28,071	14.6	47,316	23.3	77,291	

1.4 PROPOSED SITE CONDITIONS

The project proposes to construct a multi-family residential development with associated parking. The site development will include two buildings which are connected above the first story. The generated stormwater runoff has been designed to be controlled using a combination of structural and non-structural best management practices (BMPs). The non-structural installation consists of a bioretention system along the entire eastern property line. The structural installation consists of a perforated corrugated metal pipe underground infiltration system. The majority of flow will run through the treatment process and into the underground infiltration system, overflow only will be directed to the municipal system (study point 1). The majority of flow to the train tracks (study point 2) will first be collected within the bioretention system and treated within the media filter prior to infiltration.

- 1. Study Point 1: This study point examines the contributing flow to the municipal combined sewer system. The majority of the stormwater flows to this study point will first be conveyed to the perforated pipe underground infiltration system. The stormwater flow collected within the catch basins will first be adequately pre-treated using CDS hydrodynamic separators, and a Jellyfish filtration water quality device. These devices have been incorporated into the design to meet the New Hampshire Stormwater Manual regulations for flow-through devices, which shall be required as the site has an existing infiltration rate greater than 10 inches per hour. The contributing roof runoff will be connected directly to the infiltration system as this stormwater is considered uncontaminated. This underground infiltration system has been designed to infiltrate the water quality volume required for an infiltration practice (Env-Wq 1508.05). A summary of the post development stormwater flow can be found within the following table. A summary of the reduction in total peak rate of runoff and discharge volume to this Study Point can be found in the beginning of this section.
- 2. Study Point 2: This study point is located along the eastern property line. This study point analyzes the contributing flows to the existing train tracks along this entire property line. The proposed contributing flow to this study point consists of flow from the parking bays to the east of building 2. These parking bays are designed to sheet flow directly into the bioretention system along the entire eastern property line. This system has been designed to exceed the water quality volume (Env-Wq 1508.06). The stormwater will be treated by the installation of the recommended filter media prior to infiltration.

A hydrologic study of the site was conducted in order to determine the impact of the proposed development on the existing stormwater runoff. The study determined the rates and volume of runoff at these study points discussed have decreased. The included Post Watershed Plan (WS-2) outlines the boundaries and contributing watershed for the Study Points.

	Post-Development						
Analysis	Inflorm and a	2yr Storm		10yr Storm		50yr Storm	
Point	(sf)	Flow (cfs)	Volume (cf)	Flow (cfs)	Volume (cf)	Flow (cfs)	Volume (cf)
SP1	126,225	0.00	27	0.47	1,408	2.97	12,077
SP2	39,090	0.00	0	0.00	0	3.98	2,857
TOTAL=	165,315	0.0	27	0.5	1,408	7.0	14,934

SECTION 2.0

DISCUSSION

2.0 DISCUSSION

2.1 METHODOLOGY

The peak discharge rates were determined using techniques and data found in the following:

1. <u>Urban Hydrology for Small Watersheds – Technical Release 55</u> by the United States Department of Agriculture Soils Conservation Service, June 1986. Runoff curve numbers and 24-hour precipitation values were obtained from this reference.

2. <u>HydroCAD[©] Storm water Modeling System</u> by HydroCAD Software Solutions LLC, version 10.00-24. The HydroCAD program was used to generate the runoff hydrographs for the watershed areas, to determine discharge/stage/storage characteristics for the infiltration basin, to perform drainage routing and to combine the results of the runoff hydrographs.

3. <u>Soil Survey of Rockingham County, New Hampshire</u> by the United States Department of Agriculture, Natural Resources Conservation Services (NRCS). Soil types and boundaries were obtained from this reference.

2.2 PEAK DISCHARGE RATES

The storm water runoff analysis of the existing and proposed conditions includes an estimation of the peak discharge rate from various rainfall events. Peak discharge rates were developed using TR-55 Urban Hydrology for Small Watersheds, developed by the U.S. Department of Commerce, Engineering Division and the HydroCAD 10.00-24 computer program. Further, the analysis has been prepared in accordance with the NH Stormwater Management Manual and standard engineering practices. The peak discharge rate has been estimated for each watershed during the 2, 10, and 50-year storm events.

The stormwater runoff model shows that the proposed site design results in no increase to the total rate of runoff during all storm events. This is accomplished by the construction of an underground infiltration system and the installation of a bioretention system. The table in *Section 1.1 Executive Summary* provides a summary of the estimated peak discharge rates for each study point during each of the design storm events. The HydroCAD worksheets are included in the Existing and Proposed Drainage Calculations section of this report.

2.3 PERFORMANCE STANDARDS

Stormwater performance standards have been implemented as part of the overall stormwater management plan for the proposed development. The goal of these standards is to improve water quality and protect the waters of New Hampshire from adverse impacts due to development. The performance standards are met by implementing appropriate Best Management Practices (BMPs). BMPs were designed in accordance with the NH Stormwater Management Manual and Env.Wq. 1500.

BMPs implemented in the design include:

- Parking area and street sweeping
- Catch Basins
- Flow through water quality structures
- Subsurface Infiltration System
- Bioretention System
- Specific maintenance schedule

Water Quality Volume (WQV)

The Water Quality Volume (WQV) is the amount of stormwater runoff from a rainfall event that should be captured and treated to remove the majority of stormwater pollutants on an average annual basis. The recommended WQV is the volume of runoff associated with the first one-inch of rainfall, which is equivalent to capturing and treating the runoff from the 90th percentile of all rainfall.

The WQV has been calculated for the proposed site development and adequate treatment is proposed within the Infiltration System. Refer to Appendix Section 6.2 for *NHDES BMP Worksheets* for specific requirements.

Water Quality Flow (WQF)

The Water Quality Flow (WQF) is used to determine a flow rate associated with the WQV, for sizing flowbased treatment and pre-treatment practices.

The WQF has been calculated for the treatment train for the proposed work. Refer to Appendix Section 6.2 for *NHDES BMP Worksheets* for specific requirements.

Groundwater Recharge Volume (GRV)

The purpose of the groundwater recharge volume criterion is to protect groundwater resources by minimizing the loss of annual pre-development groundwater recharge as a result of the proposed development. The required Groundwater Recharge Volume (GRV) should be based on the site soils and the following equation:

GRV = (AI)(Rd)

Where:

AI = the total effective area of impervious surfaces that will exist on the site after development Rd = the groundwater recharge depth based on the USDA/NRCS hydrologic soil group, as follows:

ita tile	ground water reenarge depuir based on the OSDFFFFFFE hydrologie son group, as renows.						
2.93	ac	Area of HSG C soil or impervious cover that was replaced by impervious cover	0.40"				
0.4	inches	Rd = weighted groundwater recharge depth					
1.17	ac-in	GRV = AI * Rd					
4,251	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")					

Recharge required = $4,251 \text{ ft}^3$

Provided

Recharge Provided = 8,470 (Infiltration #1) + 2,526 (Bioretention) = 10,996 ft³ See stage storage plots within the calculation pages in the appendix of this report

2.4 EXPLANATION OF DRAINAGE SYSTEM

References:

- 1. New Hampshire Stormwater Management Manual, Volumes 2 & 3, December 2008 and Stormwater Management and Erosion and Sediment Control Handbook for Urban and Developing Areas In New Hampshire
- 2. SCS TR55 (Second Ed., 1986) for runoff curve numbers.

Runoff for treatment train #1 is collected on-site using catch basins and is then directed to a CDS hydrodynamic separation device. It then flows to a Storm filter Jellyfish device for filtration. This combination will meet the requirement for the New Hampshire Stormwater Manual flow-through devices. After pre-treatment the stormwater flows to an underground perforated corrugated metal pipe infiltration system. Runoff for treatment train #2 sheet flow directly into the proposed bioretention system. The stormwater will be treated by the installation of the recommended filter media prior to infiltration.

The 2, 10, & 50-year storm events were analyzed for pre versus post development conditions (see Drainage Summary). See complete results in the Appendix.

Pipes:

All pipes have been sized to accommodate the 25-year design storm frequency. A maximum velocity of 12.0 fps and a minimum cleaning velocity of 2.0 fps were held for pipes. The calculations herein also show all pertinent pipe data, including flow depths, discharge rates, sizes, and slopes.

The structures are indicated on the plans with their respective data, including horizontal locations and elevations of rims and inverts in and out. Construction details for the structures are shown on the details sheets of the Site Plans.

Infiltration System:

The proposed subsurface Infiltration system was sized to detain and infiltrate enough volume to reduce rates for the 2, 10, & 50-year storm events such that there is no increase in the peak rate of runoff at the Study Point. The proposed system is designed to infiltrate the water quality volume. The proposed infiltration system will consist of 60" CMP piping within crushed stone.

Bioretention System:

The proposed bioretention system was sized to the NHDES Groundwater Recharge Volume as required by Env-Wq 1504-12. The bioretention system is located along the entire eastern property line. Stormwater runoff from the parking bays to the east of building 2 will sheet flow into the bioretention system. The bioretention system will consist of depression topped with a minimum of 3" of mulch, and a 24" thick layer of filter media, as described in Env-WQ 1508.07 (k) (4).

Water Quality Structures:

The water quality structures consist of a combination of Contech CDS hydrodynamic separation devices and Contech Jellyfish stormwater quality units, which feature high flow pretreatment and membrane filtration. The Jellyfish unit has been sized to meet the water quality flow (WQF) requirement of the AOT permit. These devices are proposed to meet the New Hampshire Stormwater Manual requirements for flow-through devices. These pre-treatment devices are required because the site has an existing infiltration rate higher than 10 inches per hour. Details and elevations of the water quality units are provided within the Site Plan.

SECTION 3.0

FIGURES

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
Om	Occum fine sandy loam, high bottom	0.1	0.2%	
UdA	Udipsamments, nearly level	0.6	1.1%	
Ur	Urban land	52.3	93.0%	
W	Water (less than 40 acres)	1.5	2.7%	
WnC	Windsor-Urban land complex, 3 to 15 percent slopes	1,6	2.9%	
Totals for Area of Interest	60	56.2	100.0%	

NRCS SOIL SURVEY – MERRIMACK COUNTY, NEW HAMPSHIRE

FIG - 3

400 HARVEY ROAD

MANCHESTER, NH 03103

TEL: (603) 627-5500 FAX: (603) 627-5501 WOBURN, MA ◆ LAKEVILLE, MA ◆ MANCHESTER, NH

SECTION 4.0

PRE-DEVELOPMENT DRAINAGE CALCULATIONS

Type III, 2, 10, & 50yr Storm Event

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
16,269	96	Gravel surface, HSG A (E-2, E-3)
124,994	98	Paved parking, HSG A (E-1, E-2, E-3, E-4)
5,239	98	Roofs, HSG A (E-2, E-3)
18,813	36	Woods, Fair, HSG A (E-1, E-2, E-3, E-4)
165,315	91	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
165,315	HSG A	E-1, E-2, E-3, E-4
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
165,315		TOTAL AREA

Ground Covers (all nodes)

 HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatchment Numbers
 16,269	0	0	0	0	16,269	Gravel surface	E-2, E-3
124,994	0	0	0	0	124,994	Paved parking	E-1, E-2, E-3, E-4
5,239	0	0	0	0	5,239	Roofs	E-2, E-3
18,813	0	0	0	0	18,813	Woods, Fair	E-1, E-2, E-3, E-4
165,315	0	0	0	0	165,315	TOTAL AREA	

Summary for Subcatchment E-1: Subcat E-1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.54 cfs @ 12.07 hrs, Volume= 8,525 cf, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

Area (sf)	CN	Description		
38,815	98	Paved park	ing, HSG A	
401	36	Woods, Fai	r, HSG A	
39,216	97	Weighted A	verage	
401		1.02% Perv	vious Area	
38,815		98.98% Imp	pervious Are	ea
Tc Length	Slop	e Velocity	Capacity	Description
(min) (feet)	(ft/	ft) (ft/sec)	(cfs)	
5.0				Direct Entry, Assumed

Summary for Subcatchment E-2: Subcat E-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.56 cfs @ 12.07 hrs, Volume= 8,027 cf, Depth= 2.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

Are	ea (sf)	CN	Description
	1,812	96	Gravel surface, HSG A
3	8,204	98	Paved parking, HSG A
	1,252	98	Roofs, HSG A
	4,301	36	Woods, Fair, HSG A
4	5,569	92	Weighted Average
	6,113		13.41% Pervious Area
3	9,456		86.59% Impervious Area
Tc I	Length	Slop	e Velocity Capacity Description
(min)	(feet)	(ft/f	t) (ft/sec) (cfs)
5.0			Direct Entry, Assumed

Direct Entry, Assumed

Summary for Subcatchment E-3: Subcat E-3

[49] Hint: Tc<2dt may require smaller dt

2.76 cfs @ 12.08 hrs, Volume= Runoff = 8,532 cf, Depth= 1.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

A	rea (sf)	CN	Description					
	14,457	96	Gravel surfa	ace, HSG A				
	34,222	98	Paved park	ing, HSG A				
	3,987	98	Roofs, HSC	θĂ				
	13,543	36	Woods, Fai	r, HSG A				
	66,209	85	Weighted A	verage				
	28,000		42.29% Pe	rvious Area				
	38,210		57.71% Imp	pervious Are	ea			
_								
Tc	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
5.0					Direct Entry, Assume	d		

Summary for Subcatchment E-4: Subcat E-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.91 cfs @ 12.07 hrs, Volume= 2,987 cf, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

A	rea (sf)	CN	Description					
	13,753	98	Paved park	ing, HSG A				
	568	36	Woods, Fai	r, HSG A				
	14,321	96	Weighted A	verage				
	568		3.97% Perv	vious Area				
	13,753		96.03% Imp	pervious Are	ea			
Та	Longth	Clan	o Volocity	Consoitu	Description			
IC (Length	Siop	e velocity	Capacity	Description			
(min)	(feet)	(tt/t	i) (ft/sec)	(cts)				
5.0					Direct Entry, Assume	ed		

Summary for Reach SP1: Flow to Municipal

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53,537 sf, 98.19% Impervious	, Inflow Depth = 2.58"	for 2-Year event
Inflow	=	3.45 cfs @ 12.07 hrs, Volume=	11,512 cf	
Outflow	=	3.45 cfs @ 12.07 hrs, Volume=	11,512 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

[40] Hint: Not Described (Outflow=Inflow)

Inflow Ar	ea =	111,778 sf,	69.48% Impervious,	Inflow Depth = 1.78"	for 2-Year event
Inflow	=	5.30 cfs @	12.08 hrs, Volume=	16,559 cf	
Outflow	=	5.30 cfs @	12.08 hrs, Volume=	16,559 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1: Subcat E-1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.90 cfs @ 12.07 hrs, Volume= 13,364 cf, Depth= 4.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	vrea (sf)	CN	Description		
	38,815	98	Paved park	ing, HSG A	
	401	36	Woods, Fa	r, HSG A	
	39,216	97	Weighted A	verage	
	401		1.02% Perv	vious Area	
	38,815		98.98% Im	pervious Ar	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed

Summary for Subcatchment E-2: Subcat E-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.18 cfs @ 12.07 hrs, Volume= 13,457 cf, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

Are	ea (sf)	CN	Description
	1,812	96	Gravel surface, HSG A
3	8,204	98	Paved parking, HSG A
	1,252	98	Roofs, HSG A
	4,301	36	Woods, Fair, HSG A
4	5,569	92	Weighted Average
	6,113		13.41% Pervious Area
3	9,456		86.59% Impervious Area
Tc I	Length	Slop	e Velocity Capacity Description
(min)	(feet)	(ft/f	t) (ft/sec) (cfs)
5.0			Direct Entry, Assumed

Direct Entry, Assumed

Summary for Subcatchment E-3: Subcat E-3

[49] Hint: Tc<2dt may require smaller dt

5.09 cfs @ 12.07 hrs, Volume= Runoff = 15,750 cf, Depth= 2.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

Are	ea (sf)	CN	Description						
1	4,457	96	Gravel surfa	ace, HSG A					
3	34,222	98	Paved park	ing, HSG A					
	3,987	98	Roofs, HSC	<u> </u>					
1	3,543	36	Woods, Fai	ir, HSG A					
6	6,209	85	Weighted A	verage					
2	28,000		42.29% Per	rvious Area					
3	8,210		57.71% Imp	pervious Are	ea				
Тс	l enath	Slop	e Velocitv	Canacity	Description				
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)	Decemption				
5.0					Direct Entry,	Assumed			

Summary for Subcatchment E-4: Subcat E-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.41 cfs @ 12.07 hrs, Volume= 4,745 cf, Depth= 3.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	rea (sf)	CN	Description			
	13,753	98	Paved park	ing, HSG A		
	568	36	Woods, Fai	r, ĤSG A		
	14,321	96	Weighted A	verage		
	568		3.97% Perv	vious Area		
	13,753		96.03% Imp	pervious Are	ea	
				_		
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry, Assumed	

Summary for Reach SP1: Flow to Municipal

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53,537 sf, 98.19% Impervious	Inflow Depth = 4.06"	for 10-Year event
Inflow	=	5.30 cfs @ 12.07 hrs, Volume=	18,109 cf	
Outflow	=	5.30 cfs @ 12.07 hrs, Volume=	18,109 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

[40] Hint: Not Described (Outflow=Inflow)

Inflow Ar	ea =	111,778 sf, 69.48% Impe	ervious, Inflow Depth = 3.	14" for 10-Year event
Inflow	=	9.27 cfs @ 12.07 hrs, Vo	olume= 29,207 cf	
Outflow	=	9.27 cfs @ 12.07 hrs, Vo	olume= 29,207 cf,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1: Subcat E-1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.92 cfs @ 12.07 hrs, Volume= 20,695 cf, Depth= 6.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	vrea (sf)	CN	Description		
	38,815	98	Paved park	ing, HSG A	
	401	36	Woods, Fai	r, HSG A	
	39,216	97	Weighted A	verage	
	401		1.02% Perv	vious Area	
	38,815		98.98% Im	pervious Are	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed

Summary for Subcatchment E-2: Subcat E-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.60 cfs @ 12.07 hrs, Volume= 21,831 cf, Depth= 5.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

Area	a (sf)	CN	Description		
1	1,812	96	Gravel surface,	HSG A	A contract of the second se
38	3,204	98	Paved parking,	HSG A	
1	1,252	98	Roofs, HSG A		
4	1,301	36	Woods, Fair, H	SG A	
45	5,569	92	Weighted Avera	age	
6	5,113		13.41% Perviou	us Area	
39	9,456		86.59% Impervi	ious Are	ea
Tc L	.ength	Slop	e Velocity Ca	apacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed

Summary for Subcatchment E-3: Subcat E-3

[49] Hint: Tc<2dt may require smaller dt

8.66 cfs @ 12.07 hrs, Volume= 27,348 cf, Depth= 4.96" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	rea (sf)	CN	Description						
	14,457	96	Gravel surfa	ace, HSG A					
	34,222	98	Paved park	ing, HSG A					
	3,987	98	Roofs, HSC	θĂ					
	13,543	36	Woods, Fai	r, HSG A					
	66,209	85	Weighted A	verage					
	28,000		42.29% Per	rvious Area					
	38,210		57.71% Imp	pervious Are	ea				
_				-					
Tc	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
5.0					Direct Entry.	Assumed			

Summary for Subcatchment E-4: Subcat E-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.15 cfs @ 12.07 hrs, Volume= 7,417 cf, Depth= 6.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	rea (sf)	CN	Description			
	13,753	98	Paved park	ing, HSG A		
	568	36	Woods, Fai	r, ĤSG A		
	14,321	96	Weighted A	verage		
	568		3.97% Perv	vious Area		
	13,753		96.03% Imp	pervious Are	ea	
				_		
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry, Assumed	

Summary for Reach SP1: Flow to Municipal

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53,537 sf, 98.19% Impervious	, Inflow Depth = 6.30"	for 50-Year event
Inflow	=	8.07 cfs @ 12.07 hrs, Volume=	28,112 cf	
Outflow	=	8.07 cfs @ 12.07 hrs, Volume=	28,112 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	٩rea	=	111,778 sf,	69.48% Impervious	, Inflow Depth = 5.2	8" for 50-Year event
Inflow		=	15.26 cfs @	12.07 hrs, Volume=	49,179 cf	
Outflow	/	=	15.26 cfs @	12.07 hrs, Volume=	49,179 cf, A	tten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Subcatchment E-1: Subcat E-1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.09 cfs @ 12.07 hrs, Volume= 24,936 cf, Depth= 7.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

Are	a (sf)	CN	Description		
38	3,815	98	Paved park	ing, HSG A	N Contraction of the second seco
	401	30	woods, Fai	r, HSG A	
39	9,216	97	Weighted A	verage	
	401		1.02% Perv	ious Area	
38	3,815		98.98% Imp	pervious Are	ea
Tc L	ength	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/fl) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed

Summary for Subcatchment E-2: Subcat E-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.99 cfs @ 12.07 hrs, Volume= 26,709 cf, Depth= 7.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

Are	ea (sf)	CN	Description
	1,812	96	Gravel surface, HSG A
3	38,204	98	Paved parking, HSG A
	1,252	98	Roofs, HSG A
	4,301	36	Woods, Fair, HSG A
4	15,569	92	Weighted Average
	6,113		13.41% Pervious Area
3	39,456		86.59% Impervious Area
_			
Tc	Length	Slop	e Velocity Capacity Description
(min)	(feet)	(ft/f	.) (ft/sec) (cfs)
5.0			Direct Entry Accuracy

5.0

Direct Entry, Assumed

Summary for Subcatchment E-3: Subcat E-3

[49] Hint: Tc<2dt may require smaller dt

10.72 cfs @ 12.07 hrs, Volume= Runoff = 34,228 cf, Depth= 6.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

Are	ea (sf)	CN	Description						
1	4,457	96	Gravel surfa	ace, HSG A					
3	34,222	98	Paved park	ing, HSG A					
	3,987	98	Roofs, HSC	ΞĂ					
1	3,543	36	Woods, Fai	ir, HSG A					
6	6,209	85	Weighted A	verage					
2	28,000		42.29% Per	rvious Area					
3	8,210		57.71% Imp	pervious Are	ea				
Тс	l enath	Slop	e Velocitv	Canacity	Description				
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)	Decemption				
5.0					Direct Entry,	Assumed			

Summary for Subcatchment E-4: Subcat E-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.58 cfs @ 12.07 hrs, Volume= 8,964 cf, Depth= 7.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=7.99"

A	vrea (sf)	CN	Description		
	13,753	98	Paved park	ing, HSG A	A
	568	36	Woods, Fai	r, HSG A	
	14,321	96	Weighted A	verage	
	568		3.97% Perv	vious Area	
	13,753		96.03% Im	pervious Are	ea
-				0	
IC	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed

Summary for Reach SP1: Flow to Municipal

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	53,537 sf,	98.19% Impervious,	Inflow Depth = 7.60"	for 100-Year event
Inflow	=	9.66 cfs @	12.07 hrs, Volume=	33,900 cf	
Outflow	=	9.66 cfs @	12.07 hrs, Volume=	33,900 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	rea =	111,778 sf, 6	9.48% Impervious,	Inflow Depth = 6.54"	for 100-Year event
Inflow	=	18.71 cfs @ 12	2.07 hrs, Volume=	60,937 cf	
Outflow		18.71 cfs @ 12	2.07 hrs, Volume=	60,937 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

∪ECTS\2596−01\CIVIL\DRAWINGS\CURRENT\C−2596−01_PRE−WATERSHED.

EXISTING SUBCATCH

(
APPROVED -	NASHUA (CITY PLANNIN	G BOARD
CHAIRMAN		DA	1E
SECRETARY		DA	TE
DATE OF AF	PROVAL		
MAR SQU/	K E T A R E	104 Congress Portsmouth, PH: 603.5	St., STE 203 NH 03801 01.0202
ARCHIT	ECTS		
REV DATE	E DESCR	RIPTION	
APPLICANT\OWNE ZJBV PROP c/o JOSEPI 300 GAY S MANCHES	r: Erties, LL I's Equipn Treet Ter, NH 03	C //ENT 3103	
PROJECT:)FVFI OF	
RESIDEN 159	TEMP NASHL	LE STRE JA, NH	PMENT ET
RESIDEN 159 PROJECT NO.	TEMP NASHU 2596-01	LE STRE JA, NH DATE:	PMENT ET MAY 30, 2019
RESIDEN 159 PROJECT NO. SCALE:	11AL L TEMP NASHU 2596-01 1" = ##'	LE STRE JA, NH DATE: DWG.: C-2596	PMENT ET MAY 30, 2019 01_Pre-Watershed
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY:	11AL L TEMP NASHU 2596-01 1" = ##' AM	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY:	PMENT ET MAY 30, 2019 01_Pre-Watershed MM
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY:	11AL L TEMP NASHU 2596-01 1" = ##' AM	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY:	PMENT ET MAY 30, 2019 01_Pre-Watershed MM
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: ALLI ASSO	11AL L TEMP NASHU 2596-01 1" = ##' AM	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED BY: MAJ TES, J	PMENT ET MAY 30, 2019 01_Pre-Watershed MM
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: ALLI ASSO civil & structu environmental w w w.	ITAL L TEMP NASHU 2596-01 1" = ##' AM EN & CIA tral engin consulting a l l e n 400 HARV ANCHESTH TEL: (603) FAX: (603	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED BY: MAJ TES, J eering & lan • landscape m a j o r . c EY ROAD CR, NH 03103 0 627-5500 0 627-5501	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR INC. d surveying architecture o m
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: ALLI ALLI ASSO civil & structu environmental w w w	ITAL L TEMP NASHU 2596-01 1" = ##' AM EN & CIA' Ural engin consulting a l l e n 400 HARV ANCHESTH TEL: (603 FAX: (603 LAKEVILL	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED BY: MA Seering & lan eering & lan a j o r . c EY ROAD CR, NH 03103 0 627-5500 0 627-5501 E, MA & MAN	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR INC. d surveying architecture o m
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: PREPARED BY: ALLI ALLI ASSO civil & structurenvironmental www. M WOBURN, MA •	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA CIA CIA CIA CIA CIA CIA CIA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR NC. d surveying architecture o m
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: PREPARED BY: ALLI ALLI ASSO civil & structurenvironmental www. M WOBURN, MA • THIS DRAWING HA CLIENT/CLIENT'S RE PROVIDED COPIES OF MEDIA FOR HIS/H	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA' and engin consulting a 1 1 e n 400 HARV ANCHESTH TEL: (603 FAX: (603 LAKEVILL S BEEN PREF PRESENTATIVE DRAWINGS A ER INFORMA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR NC. d surveying architecture o m
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: PREPARED BY: ALLIA ALLIA ASSO civil & structurenvironmental www. M WOBURN, MA • THIS DRAWING HA CLIENT/CLIENT'S RE PROVIDED COPIES OF MEDIA FOR HIS/HA	ITAL L TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA CIA CIA CIA CIA CIA CIA CIA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR NC INC. d surveying architecture o m NCHESTER, NH RONIC FORMAT. ANT MAY BE IS ON MAGNETIC FOR SPECIFIC INTIAL THAT THE TENTIONALLY OR
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: PREPARED BY: PREPARED BY: ALLIN ALLIN ALLIN ASSO civil & structur environmental www. M WOBURN, MA • THIS DRAWING HA CLIENT/CLIENT'S RE PROVIDED COPIES OF MEDIA FOR HIS/HA APPLICATION TO THE MAGNETIC INFORMA OTHERWISE, ALLEN A INDICATION OF THE MEDIA. PRINTED F	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA CIA CIA CIA CIA CIA CIA CIA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR NC NC. d surveying architecture o m NCHESTER, NH RONIC FORMAT. ANT MAY BE SON MAGNETIC FOR SPECIFIC INTIAL THAT THE TENTIONALLY OR AY REMOVE ALL THE MAGNETIC DRAWINGS AND
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: PREPARED BY: ALLEN WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA CIA CIA' CIA' CIA' CIA' CIA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR OR CHESTER, NH RONIC FORMAT. ANT MAY BE IS ON MAGNETIC FOR SPECIFIC INTIAL THAT THE RENTIONALLY OR AY REMOVE ALL I THE MAGNETIC SAWINGS AND OR COPIES OF
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: PREPARED BY: ALLEN ASSO civil & structure nvironmental www. M WOBURN, MA THIS DRAWING HA CLIENT/CLIENT'S RE PROVIDED COPIES OF MEDIA FOR HIS/H APPLICATION TO THE MAGNETIC INFORMA OTHERWISE, ALLEN & INDICATION OF THE MEDIA. PRINTED F SPECIFICATIONS ISSU ALLEN & MAJOR ASSO	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA CIA CIA CIA CIA CIA CIA CIA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR OR OR SHEET NO.
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: ALLEN ASSO civil & structur environmental www. M WOBURN, MA THIS DRAWING HA CLIENT/CLIENT'S RE PROVIDED COPIES OF MEDIA FOR HIS/H APPLICATION TO THE MAGNETIC INFORMA OTHERWISE, ALLEN & INDICATION OF THE MEDIA. PRINTED R SPECIFICATIONS ISSU ALLEN & MAJOR ASSO	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA CIA CIA CIA CIA CIA CIA CIA	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR NCHESTER, NH RONIC FORMAT. ANT MAY BE SON MAGNETIC FOR SPECIFIC INTIAL THAT THE TENTIONALLY OR AY REMOVE ALL THE MAGNETIC SHEET NO. VVS-1
RESIDEN 159 PROJECT NO. SCALE: DESIGNED BY: PREPARED BY: PREPARED BY: ALLEN ASSO civil & structur environmental www. M WOBURN, MA • THIS DRAWING HA CLIENT/CLIENT'S RE PROVIDED COPIES OF MEDIA FOR HIS/H APPLICATION TO TH MAGNETIC INFORMA OTHERWISE, ALLEN TO INDICATION OF THE MEDIA. PRINTED RE SPECIFICATIONS ISSU ALLEN & MAJOR ASSU	TEMP NASHU 2596-01 1" = ##' AM 2596-01 1" = ##' AM 2596-01 1" = ##' AM CIA CIA CIA' Tal engin consulting a 1 1 e n 400 HARV ANCHESTH TEL: (603 FAX: (603 LAKEVILL S BEEN PREF PRESENTATIVE DRAWINGS A ER INFORMA S FAX: (603 LAKEVILL S BEEN PREF PRESENTATIVE DRAWINGS A ER INFORMA S PROJECT. D TION MAY BE A MAJOR ESS IDCLATES, INC."	LE STRE JA, NH DATE: DWG.: C-2596 CHECKED BY: CHECKED	PMENT ET MAY 30, 2019 01_Pre-Watershed MM OR OR OR OR A surveying architecture om NCHESTER, NH RONIC FORMAT. ANT MAY BE NS ON MAGNETIC FOR SPECIFIC FOR SPECIFIC FOR SPECIFIC THAL THAT THE TENTIONALLY OR AY REMOVE ALL THE MAGNETIC DRAWINGS AND CRD COPIES OF SHEET NO. VVS-1

LEGEND	
WATERSHED	
HMENT LABEL	
$\begin{array}{ccc} GRAPHIC SCALE \\ 15 & 30 & 60 \\ \hline \hline \\ \hline $	
(IN FEET)	

1 inch = 30 ft.

SECTION 5.0

POST-DEVELOPMENT DRAINAGE CALCULATIONS

Type III, 2, 10, & 50yr Storm Event

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
37,579	39	>75% Grass cover, Good, HSG A (P-1, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9)
106,745	98	Paved parking, HSG A (B-1, P-1, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9)
20,991	98	Roofs, HSG A (B-2)
165,316	85	TOTAL AREA

Area (sq-ft)	Soil Group	Subcatchment Numbers
165,316	HSG A	B-1, B-2, P-1, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
165,316		TOTAL AREA

Soil Listing (all nodes)
Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Numbers
37,579	0	0	0	0	37,579	>75% Grass cover, Good	d P-1, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9
106,745	0	0	0	0	106,745	Paved parking	B-1, P-1, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9
20,991	0	0	0	0	20,991	Roofs	B-2
165,316	0	0	0	0	165,316	TOTAL AREA	

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	CB1	116.92	115.62	163.0	0.0080	0.013	12.0	0.0	0.0
2	CB2	116.06	115.61	45.0	0.0100	0.013	12.0	0.0	0.0
3	CB3	115.05	114.64	41.0	0.0100	0.013	12.0	0.0	0.0
4	CB4	114.79	114.60	19.0	0.0100	0.013	12.0	0.0	0.0
5	CB5	116.79	116.21	72.0	0.0081	0.013	12.0	0.0	0.0
6	CB6	116.30	115.96	64.0	0.0053	0.013	12.0	0.0	0.0
7	CDS1	115.51	115.03	60.0	0.0080	0.013	12.0	0.0	0.0
8	CDS2	114.54	114.46	10.0	0.0080	0.013	12.0	0.0	0.0
9	CDS3	115.37	114.84	68.0	0.0078	0.013	12.0	0.0	0.0
10	DMH2	116.12	114.64	184.0	0.0080	0.013	12.0	0.0	0.0
11	DMH4	113.46	112.40	101.0	0.0105	0.013	12.0	0.0	0.0
12	INFIL1	114.80	113.56	124.0	0.0100	0.005	12.0	0.0	0.0
13	WQ1	114.74	114.67	8.0	0.0087	0.013	24.0	0.0	0.0
14	WQ2	114.17	114.03	18.0	0.0078	0.013	24.0	0.0	0.0

Pipe Listing (all nodes)

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentB-1: Subcat B-1	Runoff Area=17,679 sf 100.00% Impervious Runoff Depth=2.72" Tc=5.0 min CN=98 Runoff=1.17 cfs 4,005 cf
SubcatchmentB-2: Subcat B-2	Runoff Area=20,991 sf 100.00% Impervious Runoff Depth=2.72" Tc=5.0 min CN=98 Runoff=1.39 cfs 4,755 cf
SubcatchmentP-1: Subcat P-1	Runoff Area=8,538 sf 85.40% Impervious Runoff Depth=1.85" Tc=5.0 min CN=89 Runoff=0.42 cfs 1,320 cf
SubcatchmentP-2: Subcat P-2	Runoff Area=15,604 sf 89.69% Impervious Runoff Depth=2.11" Tc=5.0 min CN=92 Runoff=0.88 cfs 2,749 cf
SubcatchmentP-3: Subcat P-3	Runoff Area=9,350 sf 76.88% Impervious Runoff Depth=1.48" Tc=5.0 min CN=84 Runoff=0.37 cfs 1,149 cf
SubcatchmentP-4: Subcat P-4	Runoff Area=12,212 sf 85.18% Impervious Runoff Depth=1.85" Tc=5.0 min CN=89 Runoff=0.61 cfs 1,887 cf
SubcatchmentP-5: Subcat P-5	Runoff Area=9,880 sf 81.63% Impervious Runoff Depth=1.70" Tc=5.0 min CN=87 Runoff=0.45 cfs 1,396 cf
SubcatchmentP-6: Subcat P-6	Runoff Area=16,022 sf 84.15% Impervious Runoff Depth=1.85" Tc=5.0 min CN=89 Runoff=0.80 cfs 2,476 cf
SubcatchmentP-7: Subcat P-7	Runoff Area=12,690 sf 0.38% Impervious Runoff Depth=0.00" Tc=5.0 min CN=39 Runoff=0.00 cfs 0 cf
SubcatchmentP-8: Subcat P-8	Runoff Area=3,261 sf 20.98% Impervious Runoff Depth=0.10" Tc=5.0 min CN=51 Runoff=0.00 cfs 27 cf
SubcatchmentP-9: Subcat P-9	Runoff Area=39,090 sf 71.40% Impervious Runoff Depth=1.28" Tc=5.0 min CN=81 Runoff=1.33 cfs 4,154 cf
Reach SP1: Flow to Municipal	Inflow=0.00 cfs 27 cf Outflow=0.00 cfs 27 cf
Reach SP2: Flow to Tracks	Inflow=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf
Pond 1P: Bio-Retention	Peak Elev=118.20' Storage=1,030 cf Inflow=1.33 cfs 4,154 cf Discarded=0.41 cfs 4,154 cf Primary=0.00 cfs 0 cf Outflow=0.41 cfs 4,154 cf
Pond CB1: CB1	Peak Elev=117.29' Inflow=0.42 cfs 1,320 cf 12.0" Round Culvert n=0.013 L=163.0' S=0.0080 '/' Outflow=0.42 cfs 1,320 cf
Pond CB2: CB2	Peak Elev=116.61' Inflow=0.88 cfs 2,749 cf 12.0" Round Culvert n=0.013 L=45.0' S=0.0100 '/' Outflow=0.88 cfs 2,749 cf
Pond CB3: CB3	Peak Elev=115.39' Inflow=0.37 cfs 1,149 cf 12.0" Round Culvert n=0.013 L=41.0' S=0.0100 '/' Outflow=0.37 cfs 1,149 cf
Pond CB4: CB4	Peak Elev=115.24' Inflow=0.61 cfs 1,887 cf 12.0" Round Culvert n=0.013 L=19.0' S=0.0100 '/' Outflow=0.61 cfs 1,887 cf
Pond CB5: CB5	Peak Elev=117.17' Inflow=0.45 cfs 1,396 cf 12.0" Round Culvert n=0.013 L=72.0' S=0.0081 '/' Outflow=0.45 cfs 1,396 cf
Pond CB6: CB6	Peak Elev=116.84' Inflow=0.80 cfs 2,476 cf 12.0" Round Culvert n=0.013 L=64.0' S=0.0053 '/' Outflow=0.80 cfs 2,476 cf
Pond CDS1: CDS1	Peak Elev=116.20' Inflow=1.30 cfs 4,068 cf 12.0" Round Culvert n=0.013 L=60.0' S=0.0080 '/' Outflow=1.30 cfs 4,068 cf

Pond CDS2: CDS2	Peak Elev=115.34' Inflow=1.43 cfs 4,433 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0080 '/' Outflow=1.43 cfs 4,433 cf
Pond CDS3: CDS3	Peak Elev=115.89' Inflow=0.80 cfs 2,476 cf 12.0" Round Culvert n=0.013 L=68.0' S=0.0078 '/' Outflow=0.80 cfs 2,476 cf
Pond DMH2: DMH2	Peak Elev=116.50' Inflow=0.45 cfs 1,396 cf 12.0" Round Culvert n=0.013 L=184.0' S=0.0080 '/' Outflow=0.45 cfs 1,396 cf
Pond DMH4: DMH4	Peak Elev=113.46' Inflow=0.00 cfs 0 cf 12.0" Round Culvert n=0.013 L=101.0' S=0.0105 '/' Outflow=0.00 cfs 0 cf
Pond INFIL1: INFIL. #1	Peak Elev=114.21' Storage=5,362 cf Inflow=6.09 cfs 19,738 cf Discarded=1.07 cfs 19,738 cf Primary=0.00 cfs 0 cf Outflow=1.07 cfs 19,738 cf
Pond WQ1: WQ1	Peak Elev=115.50' Inflow=2.10 cfs 6,545 cf 24.0" Round Culvert n=0.013 L=8.0' S=0.0087 '/' Outflow=2.10 cfs 6,545 cf
Pond WQ2: WQ2	Peak Elev=114.76' Inflow=1.43 cfs 4,433 cf 24.0" Round Culvert n=0.013 L=18.0' S=0.0078 '/' Outflow=1.43 cfs 4,433 cf
Link 1L: Flow to Municipal	Inflow=0.00 cfs 27 cf Primary=0.00 cfs 27 cf

Total Runoff Area = 165,316 sf Runoff Volume = 23,919 cf Average Runoff Depth = 1.74" 22.73% Pervious = 37,579 sf 77.27% Impervious = 127,737 sf

Summary for Subcatchment B-1: Subcat B-1

Runoff = 1.17 cfs @ 12.07 hrs, Volume= 4,005 cf, Depth= 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

A	rea (sf)	CN	Description		
	17,679	98	Paved park	ing, HSG A	
	17,679		100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity a) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment B-2: Subcat B-2

Runoff = 1.39 cfs @ 12.07 hrs, Volume= 4,755 cf, Depth= 2.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

Α	rea (sf)	CN	Description		
	20,991	98	Roofs, HSC	θA	
	20,991		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment P-1: Subcat P-1

Runoff = 0.42 cfs @ 12.08 hrs, Volume= 1,320 cf, Depth= 1.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

A	rea (sf)	CN	Description			
	1,246	39	>75% Gras	s cover, Go	od, HSG A	
	7,292	98	Paved park	ing, HSG A		
	8,538	89	Weighted A	verage		
	1,246		14.60% Per	rvious Area		
	7,292		85.40% Imp	pervious Are	ea	
_				- ·		
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		

5.0

Direct Entry, Assumed

Summary for Subcatchment P-2: Subcat P-2

Runoff = 0.88 cfs @ 12.07 hrs, Volume= 2,749 cf, Depth= 2.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

 Area (sf)	CN	Description
1,609	39	>75% Grass cover, Good, HSG A
 13,995	98	Paved parking, HSG A
15,604	92	Weighted Average
1,609		10.31% Pervious Area
13,995		89.69% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	e Velocity (ft/sec)	Capacity (cfs)	Description	
5.0	((10.10)	(14000)	(0.0)	Direct Entr	y, Assumed
				Sumn	nary for Su	bcatchment P-3: Subcat P-3
Runoff	=	0.37 c	rfs @ 12.0	8 hrs, Volu	ime=	1,149 cf, Depth= 1.48"
Runoff b Type III 2	y SCS TR 24-hr 2-Y	R-20 me ear Rai	thod, UH=S nfall=2.95"	SCS, Weigł	nted-CN, Time	e Span= 0.00-72.00 hrs, dt= 0.05 hrs
A	rea (sf)	CN	Description			
	2,162 7,188	39 98	>75% Gras Paved park	s cover, Go ing, HSG A	bod, HSG A	
	9,350 2,162 7,188	84	Weighted A 23.12% Pe 76.88% Imp	verage rvious Area pervious Ar	ea	
Tc (min)	Length (feet)	Slope (ft/ft)	e Velocity (ft/sec)	Capacity (cfs)	Description	
5.0	(100)	(121)	((0.0)	Direct Entr	y, Assumed
				Sumn	nary for Su	bcatchment P-4: Subcat P-4
Runoff	=	0.61 c	fs @ 12.0	8 hrs, Volu	ime=	1,887 cf, Depth= 1.85"
Runoff b Type III 2	y SCS TR 24-hr 2-Y	R-20 me ear Rai	thod, UH=8 nfall=2.95"	SCS, Weigh	nted-CN, Time	e Span= 0.00-72.00 hrs, dt= 0.05 hrs
A	rea (sf)	CN	Description			
	1,809 10,403	39 98	>75% Gras Paved park	s cover, Go ing, HSG A	bod, HSG A	
	12,212	89	Weighted A	verage	<u> </u>	
	1,809		14.82% Pe	rvious Area	1	
	10,403		05.10% 111	Jei vious Ai	ea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity(ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entr	y, Assumed
				Sumn	nary for Su	bcatchment P-5: Subcat P-5
Runoff	=	0.45 c	ofs @ 12.0	8 hrs, Volu	ime=	1,396 cf, Depth= 1.70"
Runoff b Type III 2	y SCS TR 24-hr 2-Y	R-20 me ear Rai	thod, UH=9 nfall=2.95"	SCS, Weigł	nted-CN, Time	e Span= 0.00-72.00 hrs, dt= 0.05 hrs
А	rea (sf)	CN	Description			
	1,815	39	>75% Gras	s cover, Go	ood, HSG A	
	8,064 9,880	98 87	Weighted A	ing, HSG A	۱	
	1,815	07	18.37% Pe	rvious Area	l	
	8,064		81.63% lmp	pervious Ar	ea	
Tc (min)	Length	Slope	e Velocity	Capacity	Description	

	(cfs)	(ft/sec)	(ft/ft)	(feet)	(min)
Direct Entry, Assumed					5.0

Summary for Subcatchment P-6: Subcat P-6

Runoff = 0.80 cfs @ 12.08 hrs, Volume= 2,476 cf, Depth= 1.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

A	vrea (sf)	CN	Description		
	2,540	39	>75% Gras	s cover, Go	bod, HSG A
	13,482	98	Paved park	ing, HSG A	A contract of the second se
	16,022	89	Weighted A	verage	
	2,540		15.85% Per	vious Area	
	13,482		84.15% Imp	pervious Ar	ea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment P-7: Subcat P-7

Runoff = 0.00 cfs @ 0.00 hrs, Volume=	0 cf, Depth= 0.00"
---------------------------------------	--------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

A	rea (sf)	CN	Description			
	12,642	39	>75% Gras	s cover, Go	od, HSG A	
	48	98	Paved park	ting, HSG A		
	12,690	39	Weighted A	verage		
	12,642		99.62% Pe	rvious Area		
	48		0.38% Imp	ervious Area	a	
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry,	y, Assumed

Summary for Subcatchment P-8: Subcat P-8

Runoff = 0.00 cfs @ 13.66 hrs, Volume= 27 cf, Depth= 0.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95"

Α	rea (sf)	CN	Description		
	2,576	39	>75% Gras	s cover, Go	bod, HSG A
	684	98	Paved park	ing, HSG A	1
	3,261	51	Weighted A	verage	
	2,576		79.02% Pe	rvious Area	l
	684		20.98% Imp	pervious Are	ea
_				_	
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed
					•

Summary for Subcatchment P-9: Subcat P-9

Runoff = 1.33 cfs @ 12.08 hrs, Volume= 4,154 cf, Depth= 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=2.95" Prepared by Allen & Major Associates Inc. HydroCAD® 10.00-24 s/n 02881 © 2018 HydroCAD Software Solutions LLC

Area (sf)	CN	Description
11,179	39	>75% Grass cover, Good, HSG A
27,911	98	Paved parking, HSG A
39,090	81	Weighted Average
11,179		28.60% Pervious Area
27,911		71.40% Impervious Area
Tc Length (min) (feet)	Slop (ft/	e Velocity Capacity Description (t) (ft/sec) (cfs)
5.0		Direct Entry, Assumed

Summary for Reach SP1: Flow to Municipal

Inflow Are	a =	126,225 sf,	79.09% Impervio	ous, Inflow Dept	th = 0.0	00" for 2-	Year event
Inflow	=	0.00 cfs @	13.66 hrs, Volum	ie=	27 cf		
Outflow	=	0.00 cfs @	13.66 hrs, Volum)e=	27 cf, A	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

Inflow Area	a =	39,090 sf,	71.40% Impervious,	Inflow Depth = 0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: Bio-Retention

Inflow Area	a =	39,090 sf,	71.40% In	npervious,	Inflow Depth = 1	1.28" for 2	2-Year event
Inflow	=	1.33 cfs @	12.08 hrs,	Volume=	4,154 cf		
Outflow	=	0.41 cfs @	12.44 hrs,	Volume=	4,154 cf,	Atten= 699	%, Lag= 21.2 min
Discarded	=	0.41 cfs @	12.44 hrs,	Volume=	4,154 cf		
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 cf		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 118.20' @ 12.44 hrs Surf.Area= 2,442 sf Storage= 1,030 cf

Plug-Flow detention time= 27.1 min calculated for 4,151 cf (100% of inflow) Center-of-Mass det. time= 27.1 min (869.8 - 842.7)

Volume	Invert	Avail.Sto	orage Stora	ge Description		
#1 #2	118.00' 115.50'	9,4 7	01 cf Pond 88 cf Filter 2,625	Storage (Conic)List Media (Conic)List cf Overall x 30.0%	>)	
		10,1	88 cf Total	Available Storage		
Elevatic (fee	on Su :t)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
118.0 119.0 119.5 120.0	00 00 60 00	1,050 3,253 4,346 19,250	0 2,050 1,893 5,457	0 2,050 3,944 9,401	1,050 3,259 4,357 19,262	
Elevatic (fee	n Su t)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
115.5 118.0	60 00	1,050 1,050	0 2,625	0 2,625	1,050 1,337	
Device	Routing	Invert	Outlet Devi	ces		
#1 #2	Discarded Primary	115.50' 118.90'	6.500 in/hr 10.0' long Head (feet)	Exfiltration over x 0.5' breadth Bro 0.20 0.40 0.60 0	Wetted area bad-Crested Recta 0.80 1.00	ingular Weir X 3.00

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.41 cfs @ 12.44 hrs HW=118.20' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.41 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=115.50' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Summary for Pond CB1: CB1

Inflow Area	a =	8,538 sf,	85.40% Impervious,	Inflow Depth = 1.8	5" for 2-Year event
Inflow	=	0.42 cfs @	12.08 hrs, Volume=	1,320 cf	
Outflow	=	0.42 cfs @	12.08 hrs, Volume=	1,320 cf, A	tten= 0%, Lag= 0.0 min
Primary	=	0.42 cfs @	12.08 hrs, Volume=	1,320 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.29' @ 12.08 hrs Flood Elev= 119.72'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.92'	12.0" Round Culvert L= 163.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 116.92' / 115.62' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.41 cfs @ 12.08 hrs HW=117.28' (Free Discharge) 1=Culvert (Inlet Controls 0.41 cfs @ 1.61 fps)

Summary for Pond CB2: CB2

Inflow Area	a =	15,604 sf,	89.69% Impervious,	Inflow Depth = 2.11	for 2-Year event
Inflow	=	0.88 cfs @	12.07 hrs, Volume=	2,749 cf	
Outflow	=	0.88 cfs @	12.07 hrs, Volume=	2,749 cf, Att	en= 0%, Lag= 0.0 min
Primary	=	0.88 cfs @	12.07 hrs, Volume=	2,749 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.61' @ 12.07 hrs Flood Elev= 119.43'

Device	Routing	Invert	Outlet Devices		
#1	Primary	116.06'	12.0" Round Culvert L= 45.0'	CPP, projecting, no headwall,	Ke= 0.900

Inlet / Outlet Invert= 116.06' / 115.61' S= 0.0100' / Cc= 0.900n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.84 cfs @ 12.07 hrs HW=116.60' (Free Discharge) 1=Culvert (Inlet Controls 0.84 cfs @ 1.97 fps)

Summary for Pond CB3: CB3

Inflow Area	a =	9,350 sf,	76.88% Impervious,	Inflow Depth = 1.48"	for 2-Year event
Inflow	=	0.37 cfs @	12.08 hrs, Volume=	1,149 cf	
Outflow	=	0.37 cfs @	12.08 hrs, Volume=	1,149 cf, Atte	en= 0%, Lag= 0.0 min
Primary	=	0.37 cfs @	12.08 hrs, Volume=	1,149 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.39' @ 12.08 hrs Flood Elev= 119.33'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.05'	12.0" Round Culvert L= 41.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.05' / 114.64'$ S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.36 cfs @ 12.08 hrs HW=115.38' (Free Discharge) ←1=Culvert (Inlet Controls 0.36 cfs @ 1.56 fps)

Summary for Pond CB4: CB4

Inflow Area Inflow Outflow Primary	a = 12,212 sf = 0.61 cfs @ = 0.61 cfs @ = 0.61 cfs @	, 85.18% Impervious, Inflow 12.08 hrs, Volume= 12.08 hrs, Volume= 12.08 hrs, Volume=	Depth = 1.85" for 2-Year event 1,887 cf 1,887 cf, Atten= 0%, Lag= 0.0 min 1,887 cf				
Routing by Peak Elev= Flood Elev	Stor-Ind method, Tir = 115.24' @ 12.08 hr = 119.29'	ne Span= 0.00-72.00 hrs, dt: s	= 0.05 hrs				
Device R	outing Inve	rt Outlet Devices					
#1 P	rimary 114.7	9 12.0" Round Culvert L Inlet / Outlet Invert= 114. n= 0.013 Corrugated PE	= 19.0' CPP, projecting, no headwall, Ke= 0.900 79' / 114.60' S= 0.0100 '/' Cc= 0.900 , smooth interior, Flow Area= 0.79 sf				
Primary O	utFlow Max=0.59 cf ert (Inlet Controls 0.9	s @ 12.08 hrs HW=115.23' 59 cfs @ 1.78 fps)	(Free Discharge)				
		Summa	ry for Pond CB5: CB5				
Inflow Area Inflow Outflow Primary	a = 9,880 sf = 0.45 cfs @ = 0.45 cfs @ = 0.45 cfs @	, 81.63% Impervious, Inflow 12.08 hrs, Volume= 12.08 hrs, Volume= 12.08 hrs, Volume=	Depth = 1.70" for 2-Year event 1,396 cf 1,396 cf, Atten= 0%, Lag= 0.0 min 1,396 cf				
Routing by Peak Elev= Flood Elev	Stor-Ind method, Tir = 117.17' @ 12.08 hr = 119.59'	ne Span= 0.00-72.00 hrs, dt s	= 0.05 hrs				
Device R	outing Inve	rt Outlet Devices					
#1 P	rimary 116.7	9' 12.0" Round Culvert L Inlet / Outlet Invert= 116. n= 0.013 Corrugated PE	= 72.0' CPP, projecting, no headwall, Ke= 0.900 79' / 116.21' S= 0.0081 '/' Cc= 0.900 , smooth interior, Flow Area= 0.79 sf				
Primary O	Primary OutFlow Max=0.44 cfs @ 12.08 hrs HW=117.16' (Free Discharge)						
		Summa	ry for Pond CB6: CB6				
Inflow Area	a = 16,022 sf	, 84.15% Impervious, Inflow	Depth = 1.85" for 2-Year event				
Outflow	= 0.80 cfs @ = 0.80 cfs @	12.08 hrs, Volume=	2,476 cf, Atten= 0%, Lag= 0.0 min				
FIIIIaly		12.00 HIS, VOIUHIE=	2,470 0				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.84' @ 12.08 hrs Flood Elev= 119.02'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.30'	12.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 116.30' / 115.96' S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.77 cfs @ 12.08 hrs HW=116.83' (Free Discharge) -1=Culvert (Barrel Controls 0.77 cfs @ 2.64 fps)

Summary for Pond CDS1: CDS1

Inflow Area =	24,142 sf, 88.17% Impervious,	Inflow Depth = 2.02" for 2-Year event
Inflow =	1.30 cfs @ 12.07 hrs, Volume=	4,068 cf
Outflow =	1.30 cfs @ 12.07 hrs, Volume=	4,068 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.30 cfs @ 12.07 hrs, Volume=	4,068 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 116.20' @ 12.07 hrs Flood Elev= 120.34'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.51'	12.0" Round Culvert L= $60.0'$ CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.51' / 115.03'$ S= $0.0080' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.25 cfs @ 12.07 hrs HW=116.19' (Free Discharge) 1=Culvert (Inlet Controls 1.25 cfs @ 2.21 fps)

Summary for Pond CDS2: CDS2

Inflow Are	ea =	31,442 sf, 81.60% Impervious	, Inflow Depth = 1.69" for 2-Year event
Inflow	=	1.43 cfs @ 12.08 hrs, Volume=	4,433 cf
Outflow	=	1.43 cfs @ 12.08 hrs, Volume=	4,433 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.43 cfs @ 12.08 hrs, Volume=	4,433 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.34' @ 12.08 hrs Flood Elev= 119.33'

Borrise Redaing intere editer Borrise	
#1 Primary 114.54' 12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, K Inlet / Outlet Invert= 114.54' / 114.46' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Elow Area= 0.79 sf	e= 0.900

Primary OutFlow Max=1.38 cfs @ 12.08 hrs HW=115.33' (Free Discharge) 1=Culvert (Barrel Controls 1.38 cfs @ 2.86 fps)

Summary for Pond CDS3: CDS3

Inflow Area =		16,022 sf,	84.15% Impervious,	Inflow Depth = 1.85"	for 2-Year event
Inflow	=	0.80 cfs @	12.08 hrs, Volume=	2,476 cf	
Outflow	=	0.80 cfs @	12.08 hrs, Volume=	2,476 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	0.80 cfs @	12.08 hrs, Volume=	2,476 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.89' @ 12.08 hrs Flood Elev= 120.73'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.37'	12.0" Round Culvert L= $68.0'$ CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.37' / 114.84'$ S= $0.0078' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.77 cfs @ 12.08 hrs HW=115.88' (Free Discharge) -1=Culvert (Inlet Controls 0.77 cfs @ 1.92 fps)

Summary for Pond DMH2: DMH2

Inflow Area	a =	9,880 sf,	81.63% Impervious,	Inflow Depth = 1.70	0" for 2-Year event
Inflow	=	0.45 cfs @	12.08 hrs, Volume=	1,396 cf	
Outflow	=	0.45 cfs @	12.08 hrs, Volume=	1,396 cf, At	tten= 0%, Lag= 0.0 min
Primary	=	0.45 cfs @	12.08 hrs, Volume=	1,396 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.50' @ 12.08 hrs Flood Elev= 120.60'

Device	Routing	Invert	Outlet Devices		
#1	Primary	116.12'	12.0" Round Culvert L= 184.0' CPP, projecting, no headwall, Ke= 0.900		
			Inlet / Outlet Invert= 116.12' / 114.64' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=0.44 cfs @ 12.08 hrs HW=116.49' (Free Discharge) 1=Culvert (Inlet Controls 0.44 cfs @ 1.64 fps)

Summary for Pond DMH4: DMH4

Inflow Are	ea =	110,275 sf,	89.86% Impervious,	Inflow Depth = 0.00" for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 113.46' @ 0.00 hrs Flood Elev= 121.58'

Device	Routing	Invert	Outlet Devices
#1	Primary	113.46'	12.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 113.46' / 112.40' S= 0.0105 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.46' (Free Discharge) **1=Culvert** (Controls 0.00 cfs)

Summary for Pond INFIL1: INFIL. #1

Inflow Area	a =	110,275 sf,	89.86% Impervious	s, Inflow Depth = 2	2.15" for 2-Year event
Inflow	=	6.09 cfs @	12.07 hrs, Volume	= 19,738 cf	
Outflow	=	1.07 cfs @	12.53 hrs, Volume:	= 19,738 cf,	Atten= 82%, Lag= 27.7 min
Discarded	=	1.07 cfs @	12.53 hrs, Volume	= 19,738 cf	
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 114.21' @ 12.53 hrs Surf.Area= 6,699 sf Storage= 5,362 cf Flood Elev= 118.00' Surf.Area= 6,699 sf Storage= 24,649 cf

Plug-Flow detention time= 30.5 min calculated for 19,724 cf (100% of inflow) Center-of-Mass det. time= 30.4 min (818.7 - 788.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	113.00'	5,897 cf	77.00'W x 87.00'L x 5.00'H Field A
			33,495 cf Overall - 18,751 cf Embedded = 14,744 cf x 40.0% Voids
#2A	113.00'	18,751 cf	CMP Round 60 x 44 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			44 Chambers in 11 Rows
			75.00' Header x 19.63 sf x 1 = 1,472.6 cf Inside
		24 640 cf	Total Available Storage

24,649 cf I otal Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.80'	12.0" Round Culvert L= 124.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 114.80' / 113.56' S= 0.0100 // Cc= 0.900 n= 0.005, Flow Area= 0.79 sf
#2	Discarded	113.00'	6.500 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=1.07 cfs @ 12.53 hrs HW=114.21' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.07 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.00' (Free Discharge)

Summary for Pond WQ1: WQ1

Inflow Ar	ea =	40,164 sf, 86.57% Impervious,	Inflow Depth = 1.96" for 2-Year event
Inflow	=	2.10 cfs @ 12.07 hrs, Volume=	6,545 cf
Outflow	=	2.10 cfs @ 12.07 hrs, Volume=	6,545 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.10 cfs @ 12.07 hrs, Volume=	6,545 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.50' @ 12.07 hrs Flood Elev= 119.94'

	Device	Routing	Invert	Outlet Devices
--	--------	---------	--------	----------------

#1Primary114.74'24.0" Round Culvert L= 8.0'CPP, projecting, no headwall, Ke= 0.900Inlet / Outlet Invert= 114.74' / 114.67'S= 0.0087 '/'Cc= 0.900n= 0.013Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.02 cfs @ 12.07 hrs HW=115.49' (Free Discharge) ←1=Culvert (Barrel Controls 2.02 cfs @ 2.82 fps)

Summary for Pond WQ2: WQ2

Inflow Area	a =	31,442 sf,	81.60% Impervious,	Inflow Depth = 1.69"	for 2-Year event
Inflow	=	1.43 cfs @	12.08 hrs, Volume=	4,433 cf	
Outflow	=	1.43 cfs @	12.08 hrs, Volume=	4,433 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	1.43 cfs @	12.08 hrs, Volume=	4,433 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 114.76' @ 12.08 hrs Flood Elev= 119.89'

Device	Routing	Invert	Outlet Devices
#1	Primary	114.17'	24.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.17' / 114.03' S= 0.0078 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.38 cfs @ 12.08 hrs HW=114.75' (Free Discharge) 1=Culvert (Barrel Controls 1.38 cfs @ 2.74 fps)

Summary for Link 1L: Flow to Municipal

Inflow Are	ea =	113,536 sf, 87.88% Impervic	ous, Inflow Depth = 0.	00" for 2-Year event
Inflow	=	0.00 cfs @ 13.66 hrs, Volum	e= 27 cf	
Primary	=	0.00 cfs @ 13.66 hrs, Volum	e= 27 cf,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment B-1: Subcat B-1	Runoff Area=17,679 sf 100.00% Impervious Runoff Depth=4.20" Tc=5.0 min CN=98 Runoff=1.77 cfs 6,194 cf
SubcatchmentB-2: Subcat B-2	Runoff Area=20,991 sf 100.00% Impervious Runoff Depth=4.20" Tc=5.0 min CN=98 Runoff=2.10 cfs 7,354 cf
SubcatchmentP-1: Subcat P-1	Runoff Area=8,538 sf 85.40% Impervious Runoff Depth=3.24" Tc=5.0 min CN=89 Runoff=0.73 cfs 2,304 cf
SubcatchmentP-2: Subcat P-2	Runoff Area=15,604 sf 89.69% Impervious Runoff Depth=3.54" Tc=5.0 min CN=92 Runoff=1.43 cfs 4,608 cf
SubcatchmentP-3: Subcat P-3	Runoff Area=9,350 sf 76.88% Impervious Runoff Depth=2.76" Tc=5.0 min CN=84 Runoff=0.69 cfs 2,153 cf
SubcatchmentP-4: Subcat P-4	Runoff Area=12,212 sf 85.18% Impervious Runoff Depth=3.24" Tc=5.0 min CN=89 Runoff=1.05 cfs 3,295 cf
SubcatchmentP-5: Subcat P-5	Runoff Area=9,880 sf 81.63% Impervious Runoff Depth=3.04" Tc=5.0 min CN=87 Runoff=0.80 cfs 2,505 cf
SubcatchmentP-6: Subcat P-6	Runoff Area=16,022 sf 84.15% Impervious Runoff Depth=3.24" Tc=5.0 min CN=89 Runoff=1.37 cfs 4,324 cf
SubcatchmentP-7: Subcat P-7	Runoff Area=12,690 sf 0.38% Impervious Runoff Depth=0.10" Tc=5.0 min CN=39 Runoff=0.00 cfs 107 cf
SubcatchmentP-8: Subcat P-8	Runoff Area=3,261 sf 20.98% Impervious Runoff Depth=0.52" Tc=5.0 min CN=51 Runoff=0.02 cfs 142 cf
SubcatchmentP-9: Subcat P-9	Runoff Area=39,090 sf 71.40% Impervious Runoff Depth=2.50" Tc=5.0 min CN=81 Runoff=2.63 cfs 8,132 cf
Reach SP1: Flow to Municipal	Inflow=0.47 cfs 1,408 cf Outflow=0.47 cfs 1,408 cf
Reach SP2: Flow to Tracks	Inflow=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf
Pond 1P: Bio-Retention	Peak Elev=118.87' Storage=2,428 cf Inflow=2.63 cfs 8,132 cf Discarded=0.64 cfs 8,132 cf Primary=0.00 cfs 0 cf Outflow=0.64 cfs 8,132 cf
Pond CB1: CB1	Peak Elev=117.42' Inflow=0.73 cfs 2,304 cf 12.0" Round Culvert n=0.013 L=163.0' S=0.0080 '/' Outflow=0.73 cfs 2,304 cf
Pond CB2: CB2	Peak Elev=116.80' Inflow=1.43 cfs 4,608 cf 12.0" Round Culvert n=0.013 L=45.0' S=0.0100 '/' Outflow=1.43 cfs 4,608 cf
Pond CB3: CB3	Peak Elev=115.53' Inflow=0.69 cfs 2,153 cf 12.0" Round Culvert n=0.013 L=41.0' S=0.0100 '/' Outflow=0.69 cfs 2,153 cf
Pond CB4: CB4	Peak Elev=115.41' Inflow=1.05 cfs 3,295 cf 12.0" Round Culvert n=0.013 L=19.0' S=0.0100 '/' Outflow=1.05 cfs 3,295 cf
Pond CB5: CB5	Peak Elev=117.31' Inflow=0.80 cfs 2,505 cf 12.0" Round Culvert n=0.013 L=72.0' S=0.0081 '/' Outflow=0.80 cfs 2,505 cf
Pond CB6: CB6	Peak Elev=117.05' Inflow=1.37 cfs 4,324 cf 12.0" Round Culvert n=0.013 L=64.0' S=0.0053 '/' Outflow=1.37 cfs 4,324 cf
Pond CDS1: CDS1	Peak Elev=116.52' Inflow=2.16 cfs 6,912 cf 12.0" Round Culvert n=0.013 L=60.0' S=0.0080 '/' Outflow=2.16 cfs 6,912 cf

Pond CDS2: CDS2	Peak Elev=115.75' Inflow=2.55 cfs 7,953 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0080 '/' Outflow=2.55 cfs 7,953 cf
Pond CDS3: CDS3	Peak Elev=116.09' Inflow=1.37 cfs 4,324 cf 12.0" Round Culvert n=0.013 L=68.0' S=0.0078 '/' Outflow=1.37 cfs 4,324 cf
Pond DMH2: DMH2	Peak Elev=116.64' Inflow=0.80 cfs 2,505 cf 12.0" Round Culvert n=0.013 L=184.0' S=0.0080 '/' Outflow=0.80 cfs 2,505 cf
Pond DMH4: DMH4	Peak Elev=113.84' Inflow=0.46 cfs 1,159 cf 12.0" Round Culvert n=0.013 L=101.0' S=0.0105 '/' Outflow=0.46 cfs 1,159 cf
Pond INFIL1: INFIL. #1	Peak Elev=115.18' Storage=10,573 cf Inflow=9.96 cfs 32,737 cf Discarded=1.12 cfs 31,578 cf Primary=0.46 cfs 1,159 cf Outflow=1.58 cfs 32,737 cf
Pond WQ1: WQ1	Peak Elev=115.76' Inflow=3.54 cfs 11,236 cf 24.0" Round Culvert n=0.013 L=8.0' S=0.0087 // Outflow=3.54 cfs 11,236 cf
Pond WQ2: WQ2	Peak Elev=114.99' Inflow=2.55 cfs 7,953 cf 24.0" Round Culvert n=0.013 L=18.0' S=0.0078 '/' Outflow=2.55 cfs 7,953 cf
Link 1L: Flow to Municipal	Inflow=0.47 cfs 1,301 cf Primary=0.47 cfs 1,301 cf

Total Runoff Area = 165,316 sf Runoff Volume = 41,118 cf Average Runoff Depth = 2.98" 22.73% Pervious = 37,579 sf 77.27% Impervious = 127,737 sf

Summary for Subcatchment B-1: Subcat B-1

Runoff = 1.77 cfs @ 12.07 hrs, Volume= 6,194 cf, Depth= 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	rea (sf)	CN	Description		
	17,679	98	Paved park	ing, HSG A	
	17,679		100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment B-2: Subcat B-2

Runoff = 2.10 cfs @ 12.07 hrs, Volume= 7,354 cf, Depth= 4.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

Α	rea (sf)	CN	Description		
	20,991	98	Roofs, HSC	θA	
	20,991		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment P-1: Subcat P-1

Runoff = 0.73 cfs @ 12.07 hrs, Volume= 2,304 cf, Depth= 3.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	rea (sf)	CN	Description			
	1,246	39	>75% Grass	s cover, Go	od, HSG A	
	7,292	98	Paved parki	ng, HSG A		
	8,538	89	Weighted A	verage		
	1,246		14.60% Per	vious Area		
	7,292		85.40% Imp	ervious Are	ea	
_		.		- ·		
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		

5.0

Direct Entry, Assumed

Summary for Subcatchment P-2: Subcat P-2

Runoff = 1.43 cfs @ 12.07 hrs, Volume= 4,608 cf, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

 Area (sf)	CN	Description
1,609	39	>75% Grass cover, Good, HSG A
 13,995	98	Paved parking, HSG A
15,604	92	Weighted Average
1,609		10.31% Pervious Area
13,995		89.69% Impervious Area

Tc (min)	Length	Slope Velocity Capacity Description									
5.0	(1001)	Direct Entry, Assumed									
	Summary for Subcatchment P-3: Subcat P-3										
Dunoff		0.60 of = 42.09 bro)/aluma $2.452 of Denth = 2.76"$									
Runoli	=	$0.69 \text{ CIS} \oplus 12.08 \text{ HIS}, \text{ Volume} = 2,153 \text{ CI}, \text{ Depth} = 2.76$									
Runoff I Type III	by SCS TR 24-hr 10-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs -Year Rainfall=4.44"									
	vrea (sf)	CN Description									
	2,162 7.188	39 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A									
	9,350	84 Weighted Average									
	2,162	23.12% Pervious Area									
	7,100	76.00% Impervious Area									
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)									
5.0	, <i>i</i>	Direct Entry, Assumed									
		Summary for Subcatchment P-4: Subcat P-4									
Runoff	=	1.05 cfs @ 12.07 hrs, Volume= 3,295 cf, Depth= 3.24"									
Runoff I	OV SCS TR	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs									
Type III	24-hr 10-	-Year Rainfall=4.44"									
	vrea (sf)	CN Description									
	1,809	39 >75% Grass cover, Good, HSG A									
	12.212	89 Weighted Average									
	1,809	14.82% Pervious Area									
	10,403	85.18% Impervious Area									
Тс	Length	Slope Velocity Capacity Description									
(min) 5.0	(feet)	(ft/ft) (ft/sec) (cfs) Direct Entry Assumed									
5.0		Direct Litti y, Assumed									
		Summary for Subcatchment P-5: Subcat P-5									
Runoff	=	0.80 cfs @ 12.07 hrs, Volume= 2,505 cf, Depth= 3.04"									
Runoff I Type III	oy SCS TR 24-hr 10-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs -Year Rainfall=4.44"									
A	vrea (sf)	CN Description									
	1,815	39 >75% Grass cover, Good, HSG A									
	9,880	87 Weighted Average									
	1,815	18.37% Pervious Area									
	8,064	81.63% Impervious Area									
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)									

	(1001)) (1010)	(10000)	(010)	
5.0)			Direct I	Entry, Assumed

Summary for Subcatchment P-6: Subcat P-6

Runoff = 1.37 cfs @ 12.07 hrs, Volume= 4,324 cf, Depth= 3.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	rea (sf)	CN	Description		
	2,540	39	>75% Gras	s cover, Go	bod, HSG A
	13,482	98	Paved park	ing, HSG A	
	16,022	89	Weighted A	verage	
	2,540		15.85% Per	rvious Area	
	13,482		84.15% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment P-7: Subcat P-7

Runoff =	0.00 cfs @	14.77 hrs, Volume=	107 cf, Depth= 0.10"
----------	------------	--------------------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	rea (sf)	CN	Description				
	12,642	39	>75% Gras	s cover, Go	od, HSG A		
	48	98	Paved park	ing, HSG A			
	12,690	39	Weighted A	verage			
	12,642		99.62% Pe	rvious Area			
	48		0.38% Impe	ervious Area	l		
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry, Assumed		

Summary for Subcatchment P-8: Subcat P-8

Runoff = 0.02 cfs @ 12.12 hrs, Volume= 142 cf, Depth= 0.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44"

A	rea (sf)	CN	Description		
	2,576	39	>75% Gras	s cover, Go	bod, HSG A
	684	98	Paved park	ing, HSG A	
	3,261	51	Weighted A	verage	
	2,576		79.02% Pe	rvious Area	l
	684		20.98% Imp	pervious Are	ea
_				<u> </u>	
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
5.0					Direct Entry, Assumed

Summary for Subcatchment P-9: Subcat P-9

Runoff = 2.63 cfs @ 12.08 hrs, Volume= 8,132 cf, Depth= 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.44" Prepared by Allen & Major Associates Inc. HydroCAD® 10.00-24 s/n 02881 © 2018 HydroCAD Software Solutions LLC

Area	(sf)	CN	Description					
11,	179	39	>75% Gras	s cover, Go	bod, HSG A			
27,	911	98	Paved park	ing, HSG A				
39,	090	81	Weighted A	verage				
11,	179	28.60% Pervious Area						
27,	911		71.40% Imp	pervious Are	ea			
Tc Le (min) (ength (feet)	Slop (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry, Assumed			

Summary for Reach SP1: Flow to Municipal

Inflow Area	a =	126,225 sf,	79.09% Impervious,	Inflow Depth = 0.13"	for 10-Year event
Inflow	=	0.47 cfs @	12.55 hrs, Volume=	1,408 cf	
Outflow	=	0.47 cfs @	12.55 hrs, Volume=	1,408 cf, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

Inflow Area	a =	39,090 sf,	71.40% Impervious,	Inflow Depth = 0.00"	for 10-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: Bio-Retention

Inflow Area	a =	39,090 sf,	, 71.40% lm	pervious,	Inflow Depth = 2	2.50" f	or 10-`	Year eve	nt
Inflow	=	2.63 cfs @	12.08 hrs,	Volume=	8,132 cf				
Outflow	=	0.64 cfs @	12.48 hrs,	Volume=	8,132 cf,	Atten=	76%,	Lag= 24.	1 min
Discarded	=	0.64 cfs @	12.48 hrs,	Volume=	8,132 cf			-	
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0 cf				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 118.87' @ 12.48 hrs Surf.Area= 3,939 sf Storage= 2,428 cf

Plug-Flow detention time= 38.0 min calculated for 8,126 cf (100% of inflow) Center-of-Mass det. time= 38.0 min (861.2 - 823.3)

Volume	Invert	Avail.Sto	orage Stora	ge Description			
#1 #2	118.00' 115.50'	9,4 7	01 cf Pond 88 cf Filter 2,625	Storage (Conic)List Media (Conic)List cf Overall x 30.0%	isted below (Recalc ed below (Recalc) 5 Voids	c)	
		10,1	88 cf Total	Available Storage			
Elevatio (fee	n Su t)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>		
118.0 119.0 119.5 120.0	0 0 0 0	1,050 3,253 4,346 19,250	0 2,050 1,893 5,457	0 2,050 3,944 9,401	1,050 3,259 4,357 19,262		
Elevatio (fee	n Su t)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
115.5 118.0	0 0	1,050 1,050	0 2,625	0 2,625	1,050 1,337		
Device	Routing	Invert	Outlet Devi	ces			
#1 #2	Discarded Primary	115.50' 118.90'	6.500 in/hr 10.0' long Head (feet)	Exfiltration over x 0.5' breadth Bro 0.20 0.40 0.60 0	Wetted area bad-Crested Recta 0.80 1.00	angular Weir X 3.00	

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.64 cfs @ 12.48 hrs HW=118.87' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.64 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=115.50' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Summary for Pond CB1: CB1

Inflow Area	a =	8,538 sf,	85.40% Impervious,	Inflow Depth = 3.24"	for 10-Year event
Inflow	=	0.73 cfs @	12.07 hrs, Volume=	2,304 cf	
Outflow	=	0.73 cfs @	12.07 hrs, Volume=	2,304 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	0.73 cfs @	12.07 hrs, Volume=	2,304 cf	-

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.42' @ 12.07 hrs Flood Elev= 119.72'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.92'	12.0" Round Culvert L= 163.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 116.92' / 115.62' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.70 cfs @ 12.07 hrs HW=117.40' (Free Discharge) 1=Culvert (Inlet Controls 0.70 cfs @ 1.87 fps)

Summary for Pond CB2: CB2

Inflow Area	a =	15,604 sf,	89.69% Impervious,	Inflow Depth = 3.54'	for 10-Year event
Inflow	=	1.43 cfs @	12.07 hrs, Volume=	4,608 cf	
Outflow	=	1.43 cfs @	12.07 hrs, Volume=	4,608 cf, Att	en= 0%, Lag= 0.0 min
Primary	=	1.43 cfs @	12.07 hrs, Volume=	4,608 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.80' @ 12.07 hrs Flood Elev= 119.43'

	Device	Routing	Invert	Outlet Devices
--	--------	---------	--------	----------------

 #1
 Primary
 116.06'
 12.0"
 Round Culvert
 L= 45.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 116.06' / 115.61'
 S= 0.0100 '/'
 Cc= 0.900

 n= 0.013
 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.38 cfs @ 12.07 hrs HW=116.78' (Free Discharge) 1=Culvert (Inlet Controls 1.38 cfs @ 2.28 fps)

Summary for Pond CB3: CB3

Inflow Area	a =	9,350 sf,	76.88% Impervious,	Inflow Depth = 2.76	for 10-Year event
Inflow	=	0.69 cfs @	12.08 hrs, Volume=	2,153 cf	
Outflow	=	0.69 cfs @	12.08 hrs, Volume=	2,153 cf, Att	ten= 0%, Lag= 0.0 min
Primary	=	0.69 cfs @	12.08 hrs, Volume=	2,153 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.53' @ 12.08 hrs Flood Elev= 119.33'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.05'	12.0" Round Culvert L= 41.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 115.05' / 114.64' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.67 cfs @ 12.08 hrs HW=115.52' (Free Discharge) 1=Culvert (Inlet Controls 0.67 cfs @ 1.84 fps)

Summary for Pond CB4: CB4

Inflow Area = Inflow = Outflow = Primary = Routing by Stor-I Peak Elev= 115. Flood Elev= 119.	12,212 sf, 85.18% Impervious, Inflow Depth = 3.24" for 10-Year event 1.05 cfs @ 12.07 hrs, Volume= 3,295 cf 1.05 cfs @ 12.07 hrs, Volume= 3,295 cf, Atten= 0%, Lag= 0.0 min 1.05 cfs @ 12.07 hrs, Volume= 3,295 cf nd method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 41' @ 12.07 hrs 29'				
Device Routing	Invert Outlet Devices				
#1 Primary	114.79' 12.0" Round Culvert L= 19.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.79' / 114.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf				
Primary OutFlow	w Max=1.01 cfs @ 12.07 hrs HW=115.39′ (Free Discharge) arrel Controls 1.01 cfs @ 2.93 fps)				
	Summary for Pond CB5: CB5				
Inflow Area = Inflow = Outflow = Primary =	9,880 sf, 81.63% Impervious, Inflow Depth = 3.04"for 10-Year event0.80 cfs @ 12.07 hrs, Volume=2,505 cf0.80 cfs @ 12.07 hrs, Volume=2,505 cf, Atten= 0%, Lag= 0.0 min0.80 cfs @ 12.07 hrs, Volume=2,505 cf				
Routing by Stor-I Peak Elev= 117.3 Flood Elev= 119.	nd method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs 31' @ 12.07 hrs 59'				
Device Routing	Invert Outlet Devices				
#1 Primary	116.79' 12.0" Round Culvert L= 72.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 116.79' / 116.21' S= 0.0081 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf				
Primary OutFlow Max=0.77 cfs @ 12.07 hrs HW=117.30' (Free Discharge) -1=Culvert (Inlet Controls 0.77 cfs @ 1.92 fps)					
Summary for Pond CB6: CB6					
Inflow Area = Inflow = Outflow = Primary =	16,022 sf, 84.15% Impervious, Inflow Depth = 3.24"for 10-Year event1.37 cfs @ 12.07 hrs, Volume=4,324 cf1.37 cfs @ 12.07 hrs, Volume=4,324 cf, Atten= 0%, Lag= 0.0 min1.37 cfs @ 12.07 hrs, Volume=4,324 cf				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.05' @ 12.07 hrs Flood Elev= 119.02'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.30'	12.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $116.30' / 115.96'$ S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.32 cfs @ 12.07 hrs HW=117.03' (Free Discharge) —1=Culvert (Barrel Controls 1.32 cfs @ 2.99 fps)

Summary for Pond CDS1: CDS1

Inflow Area	l =	24,142 sf,	88.17% Impervious,	Inflow Depth = 3.44 "	for 10-Year event
Inflow	=	2.16 cfs @	12.07 hrs, Volume=	6,912 cf	
Outflow	=	2.16 cfs @	12.07 hrs, Volume=	6,912 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	2.16 cfs @	12.07 hrs, Volume=	6,912 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 116.52' @ 12.07 hrs Flood Elev= 120.34'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.51'	12.0" Round Culvert L= $60.0'$ CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.51' / 115.03'$ S= $0.0080' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.09 cfs @ 12.07 hrs HW=116.49' (Free Discharge) 1=Culvert (Inlet Controls 2.09 cfs @ 2.66 fps)

Summary for Pond CDS2: CDS2

Inflow Area =		31,442 sf, 81.60% Impervious,	Inflow Depth = 3.04" for 10-Year event
Inflow	=	2.55 cfs @ 12.07 hrs, Volume=	7,953 cf
Outflow	=	2.55 cfs @ 12.07 hrs, Volume=	7,953 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.55 cfs @ 12.07 hrs, Volume=	7,953 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.75' @ 12.07 hrs Flood Elev= 119.33'

Device	Routing	Invert	Outlet Devices
#1	Primary	114.54'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 114.54' / 114.46' S= 0.0080 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.46 cfs @ 12.07 hrs HW=115.72' (Free Discharge)

Summary for Pond CDS3: CDS3

Inflow Area =		16,022 sf, 84.15% Impervious	Inflow Depth = 3.24" for 10-Year event
Inflow	=	1.37 cfs @ 12.07 hrs, Volume=	4,324 cf
Outflow	=	1.37 cfs @ 12.07 hrs, Volume=	4,324 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.37 cfs @ 12.07 hrs, Volume=	4,324 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.09' @ 12.07 hrs Flood Elev= 120.73'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.37'	12.0" Round Culvert L= $68.0'$ CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.37' / 114.84'$ S= $0.0078' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.32 cfs @ 12.07 hrs HW=116.07' (Free Discharge) 1=Culvert (Inlet Controls 1.32 cfs @ 2.25 fps)

Summary for Pond DMH2: DMH2

Inflow Area	a =	9,880 sf,	81.63% Impervious,	Inflow Depth = 3.04"	for 10-Year event
Inflow	=	0.80 cfs @	12.07 hrs, Volume=	2,505 cf	
Outflow	=	0.80 cfs @	12.07 hrs, Volume=	2,505 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	0.80 cfs @	12.07 hrs, Volume=	2,505 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.64' @ 12.07 hrs Flood Elev= 120.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.12'	12.0" Round Culvert L= 184.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 116.12' / 114.64' S= 0.0080 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.77 cfs @ 12.07 hrs HW=116.63' (Free Discharge) 1=Culvert (Inlet Controls 0.77 cfs @ 1.92 fps)

Summary for Pond DMH4: DMH4

Inflow Area =		110,275 sf, 89.86% Impervious,	Inflow Depth = 0.13" for 10-Year event
Inflow	=	0.46 cfs @ 12.55 hrs, Volume=	1,159 cf
Outflow	=	0.46 cfs @ 12.55 hrs, Volume=	1,159 cf, Atten= 0%, Lag= 0.0 min
Primarv	=	0.46 cfs @ 12.55 hrs. Volume=	1.159 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 113.84' @ 12.55 hrs Flood Elev= 121.58'

Device	Routing	Invert	Outlet Devices
#1	Primary	113.46'	12.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $113.46' / 112.40'$ S= 0.0105 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.46 cfs @ 12.55 hrs HW=113.84' (Free Discharge) 1=Culvert (Inlet Controls 0.46 cfs @ 1.66 fps)

Summary for Pond INFIL1: INFIL. #1

Inflow Area	a =	110,275 sf	89.86% Impervious,	Inflow Depth = 3.56	for 10-Year event
Inflow	=	9.96 cfs @	12.07 hrs, Volume=	32,737 cf	
Outflow	=	1.58 cfs @	12.55 hrs, Volume=	32,737 cf, Att	en= 84%, Lag= 28.9 min
Discarded	=	1.12 cfs @	12.55 hrs, Volume=	31,578 cf	-
Primary	=	0.46 cfs @	12.55 hrs, Volume=	1,159 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.18' @ 12.55 hrs Surf.Area= 6,699 sf Storage= 10,573 cf Flood Elev= 118.00' Surf.Area= 6,699 sf Storage= 24,649 cf

Plug-Flow detention time= 60.9 min calculated for 32,714 cf (100% of inflow) Center-of-Mass det. time= 60.8 min (838.4 - 777.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	113.00'	5,897 cf	77.00'W x 87.00'L x 5.00'H Field A
			33,495 cf Overall - 18,751 cf Embedded = 14,744 cf x 40.0% Voids
#2A	113.00'	18,751 cf	CMP Round 60 x 44 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			44 Chambers in 11 Rows
			75.00' Header x 19.63 sf x 1 = 1,472.6 cf Inside
		24 640 cf	Total Available Storage

24,649 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.80'	12.0" Round Culvert L= 124.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 114.80' / 113.56' S= 0.0100 // Cc= 0.900 n= 0.005, Flow Area= 0.79 sf
#2	Discarded	113.00'	6.500 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=1.12 cfs @ 12.55 hrs HW=115.18' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.12 cfs)

Primary OutFlow Max=0.46 cfs @ 12.55 hrs HW=115.18' (Free Discharge)

Summary for Pond WQ1: WQ1

Inflow Area =		40,164 sf, 86.57% Impervious,	Inflow Depth = 3.36"	for 10-Year event
Inflow	=	3.54 cfs @ 12.07 hrs, Volume=	11,236 cf	
Outflow	=	3.54 cfs @ 12.07 hrs, Volume=	11,236 cf, Atten	n= 0%, Lag= 0.0 min
Primary	=	3.54 cfs @ 12.07 hrs, Volume=	11,236 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.76' @ 12.07 hrs Flood Elev= 119.94'

	Device	Routina	Invert	Outlet Devices
--	--------	---------	--------	----------------

#1 Primary 114.74' **24.0" Round Culvert** L= 8.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.74' / 114.67' S= 0.0087 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=3.41 cfs @ 12.07 hrs HW=115.74' (Free Discharge) ←1=Culvert (Barrel Controls 3.41 cfs @ 3.18 fps)

Summary for Pond WQ2: WQ2

Inflow Area	a =	31,442 sf,	81.60% Impervious,	Inflow Depth = 3.04" for 10-Year event	
Inflow	=	2.55 cfs @	12.07 hrs, Volume=	7,953 cf	
Outflow	=	2.55 cfs @	12.07 hrs, Volume=	7,953 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	2.55 cfs @	12.07 hrs, Volume=	7,953 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 114.99' @ 12.07 hrs Flood Elev= 119.89'

Device	Routing	Invert	Outlet Devices
#1	Primary	114.17'	24.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.17' / 114.03' S= 0.0078 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.45 cfs @ 12.07 hrs HW=114.97' (Free Discharge) 1=Culvert (Barrel Controls 2.45 cfs @ 3.10 fps)

Summary for Link 1L: Flow to Municipal

Inflow Are	ea =	113,536 sf,	87.88% lr	npervious,	Inflow Depth = 0	.14" for 1	0-Year event
Inflow	=	0.47 cfs @	12.55 hrs,	Volume=	1,301 cf		
Primary	=	0.47 cfs @	12.55 hrs,	Volume=	1,301 cf,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentB-1: Subcat B-1	Runoff Area=17,679 sf 100.00% Impervious Runoff Depth=6.45" Tc=5.0 min CN=98 Runoff=2.68 cfs 9,504 cf
Subcatchment B-2: Subcat B-2	Runoff Area=20,991 sf 100.00% Impervious Runoff Depth=6.45" Tc=5.0 min CN=98 Runoff=3.18 cfs 11,285 cf
Subcatchment P-1: Subcat P-1	Runoff Area=8,538 sf 85.40% Impervious Runoff Depth=5.41" Tc=5.0 min CN=89 Runoff=1.19 cfs 3,846 cf
Subcatchment P-2: Subcat P-2	Runoff Area=15,604 sf 89.69% Impervious Runoff Depth=5.75" Tc=5.0 min CN=92 Runoff=2.26 cfs 7,475 cf
Subcatchment P-3: Subcat P-3	Runoff Area=9,350 sf 76.88% Impervious Runoff Depth=4.85" Tc=5.0 min CN=84 Runoff=1.20 cfs 3,776 cf
Subcatchment P-4: Subcat P-4	Runoff Area=12,212 sf 85.18% Impervious Runoff Depth=5.41" Tc=5.0 min CN=89 Runoff=1.70 cfs 5,501 cf
Subcatchment P-5: Subcat P-5	Runoff Area=9,880 sf 81.63% Impervious Runoff Depth=5.18" Tc=5.0 min CN=87 Runoff=1.34 cfs 4,265 cf
Subcatchment P-6: Subcat P-6	Runoff Area=16,022 sf 84.15% Impervious Runoff Depth=5.41" Tc=5.0 min CN=89 Runoff=2.23 cfs 7,218 cf
Subcatchment P-7: Subcat P-7	Runoff Area=12,690 sf 0.38% Impervious Runoff Depth=0.66" Tc=5.0 min CN=39 Runoff=0.09 cfs 699 cf
Subcatchment P-8: Subcat P-8	Runoff Area=3,261 sf 20.98% Impervious Runoff Depth=1.58" Tc=5.0 min CN=51 Runoff=0.12 cfs 430 cf
Subcatchment P-9: Subcat P-9	Runoff Area=39,090 sf 71.40% Impervious Runoff Depth=4.52" Tc=5.0 min CN=81 Runoff=4.73 cfs 14,716 cf
Reach SP1: Flow to Municipal	Inflow=2.97 cfs 12,077 cf Outflow=2.97 cfs 12,077 cf
Reach SP2: Flow to Tracks	Inflow=3.98 cfs 2,857 cf Outflow=3.98 cfs 2,857 cf
Pond 1P: Bio-Retention	Peak Elev=119.03' Storage=2,950 cf Inflow=4.73 cfs 14,716 cf Discarded=0.70 cfs 11,859 cf Primary=3.98 cfs 2,857 cf Outflow=4.68 cfs 14,716 cf
Pond CB1: CB1	Peak Elev=117.58' Inflow=1.19 cfs 3,846 cf 12.0" Round Culvert n=0.013 L=163.0' S=0.0080 '/' Outflow=1.19 cfs 3,846 cf
Pond CB2: CB2	Peak Elev=117.13' Inflow=2.26 cfs 7,475 cf 12.0" Round Culvert n=0.013 L=45.0' S=0.0100 '/' Outflow=2.26 cfs 7,475 cf
Pond CB3: CB3	Peak Elev=115.71' Inflow=1.20 cfs 3,776 cf 12.0" Round Culvert n=0.013 L=41.0' S=0.0100 '/' Outflow=1.20 cfs 3,776 cf
Pond CB4: CB4	Peak Elev=115.63' Inflow=1.70 cfs 5,501 cf 12.0" Round Culvert n=0.013 L=19.0' S=0.0100 '/' Outflow=1.70 cfs 5,501 cf
Pond CB5: CB5	Peak Elev=117.50' Inflow=1.34 cfs 4,265 cf 12.0" Round Culvert n=0.013 L=72.0' S=0.0081 '/' Outflow=1.34 cfs 4,265 cf
Pond CB6: CB6	Peak Elev=117.35' Inflow=2.23 cfs 7,218 cf 12.0" Round Culvert n=0.013 L=64.0' S=0.0053 '/' Outflow=2.23 cfs 7,218 cf
Pond CDS1: CDS1	Peak Elev=117.33' Inflow=3.45 cfs 11,322 cf 12.0" Round Culvert n=0.013 L=60.0' S=0.0080 '/' Outflow=3.45 cfs 11,322 cf

Pond CDS2: CDS2	Peak Elev=117.04' Inflow=4.24 cfs 13,542 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0080 '/' Outflow=4.24 cfs 13,542 cf
Pond CDS3: CDS3	Peak Elev=116.42' Inflow=2.23 cfs 7,218 cf 12.0" Round Culvert n=0.013 L=68.0' S=0.0078 '/' Outflow=2.23 cfs 7,218 cf
Pond DMH2: DMH2	Peak Elev=116.83' Inflow=1.34 cfs 4,265 cf 12.0" Round Culvert n=0.013 L=184.0' S=0.0080 '/' Outflow=1.34 cfs 4,265 cf
Pond DMH4: DMH4	Peak Elev=114.87' Inflow=2.84 cfs 10,949 cf 12.0" Round Culvert n=0.013 L=101.0' S=0.0105 '/' Outflow=2.84 cfs 10,949 cf
Pond INFIL1: INFIL. #1	Peak Elev=116.21' Storage=16,206 cf Inflow=15.79 cfs 52,870 cf Discarded=1.17 cfs 41,921 cf Primary=2.84 cfs 10,949 cf Outflow=4.01 cfs 52,870 cf
Pond WQ1: WQ1	Peak Elev=116.08' Inflow=5.69 cfs 18,539 cf 24.0" Round Culvert n=0.013 L=8.0' S=0.0087 '/' Outflow=5.69 cfs 18,539 cf
Pond WQ2: WQ2	Peak Elev=115.26' Inflow=4.24 cfs 13,542 cf 24.0" Round Culvert n=0.013 L=18.0' S=0.0078 '/' Outflow=4.24 cfs 13,542 cf
Link 1L: Flow to Municipal	Inflow=2.89 cfs 11,378 cf Primary=2.89 cfs 11,378 cf

Total Runoff Area = 165,316 sf Runoff Volume = 68,714 cf Average Runoff Depth = 4.99" 22.73% Pervious = 37,579 sf 77.27% Impervious = 127,737 sf

Summary for Subcatchment B-1: Subcat B-1

Runoff = 2.68 cfs @ 12.07 hrs, Volume= 9,504 cf, Depth= 6.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	rea (sf)	CN	Description		
	17,679	98	Paved park	ing, HSG A	
	17,679		100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment B-2: Subcat B-2

Runoff = 3.18 cfs @ 12.07 hrs, Volume= 11,285 cf, Depth= 6.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

Α	rea (sf)	CN	Description		
	20,991	98	Roofs, HSC	θA	
	20,991		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment P-1: Subcat P-1

Runoff = 1.19 cfs @ 12.07 hrs, Volume= 3,846 cf, Depth= 5.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	rea (sf)	CN	Description
	1,246	39	>75% Grass cover, Good, HSG A
	7,292	98	Paved parking, HSG A
	8,538	89	Weighted Average
	1,246		14.60% Pervious Area
	7,292		85.40% Impervious Area
Tc	Length	Slop	be Velocity Capacity Description
(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)

5.0

Direct Entry, Assumed

Summary for Subcatchment P-2: Subcat P-2

Runoff = 2.26 cfs @ 12.07 hrs, Volume= 7,475 cf, Depth= 5.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

 Area (sf)	CN	Description
1,609	39	>75% Grass cover, Good, HSG A
 13,995	98	Paved parking, HSG A
15,604	92	Weighted Average
1,609		10.31% Pervious Area
13,995		89.69% Impervious Area

Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
5.0	(1001)	Direct Entry, Assumed							
	Summary for Subcatchment P-3: Subcat P-3								
Runoff	=	1.20 cfs @ 12.07 hrs, Volume= 3,776 cf, Depth= 4.85"							
Runoff b Type III	y SCS TF 24-hr 50-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs -Year Rainfall=6.69"							
A	rea (sf)	CN Description							
	2,162 7,188	39 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A							
	9,350 2,162 7,188	84 Weighted Average 23.12% Pervious Area 76.88% Impervious Area							
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
5.0		Direct Entry, Assumed							
		Summary for Subcatchment P-4: Subcat P-4							
Runoff	=	1.70 cfs @ 12.07 hrs, Volume= 5,501 cf, Depth= 5.41"							
Runoff b Type III	y SCS TF 24-hr 50-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs -Year Rainfall=6.69"							
A	rea (sf)	CN Description							
	1,809 10,403	39 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A							
	12,212 1,809 10,403	89 Weighted Average 14.82% Pervious Area 85.18% Impervious Area							
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
5.0		Direct Entry, Assumed							
Summary for Subcatchment P-5: Subcat P-5									
Runoff	=	1.34 cfs @ 12.07 hrs, Volume= 4,265 cf, Depth= 5.18"							
Runoff b Type III	y SCS TF 24-hr 50-	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs I-Year Rainfall=6.69"							
A	rea (sf)	CN Description							
	1,815 8,064	 39 >75% Grass cover, Good, HSG A 98 Paved parking, HSG A 							
	9,880	87 Weighted Average							
	1,815 8,064	18.37% Pervious Area 81.63% Impervious Area							
Tc	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							

	(1000)	(10000)	
5.0			Direct Entry, Assumed

Summary for Subcatchment P-6: Subcat P-6

Runoff = 2.23 cfs @ 12.07 hrs, Volume= 7,218 cf, Depth= 5.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	vrea (sf)	CN	Description				
	2,540	39	>75% Gras	s cover, Go	od, HSG A		
	13,482	98	Paved park	ing, HSG A			
	16,022	89	Weighted A	verage			
	2,540		15.85% Pe	rvious Area			
	13,482		84.15% Imp	pervious Are	ea		
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry, Assumed		

Summary for Subcatchment P-7: Subcat P-7

Runoff = 0.09 c	fs @ 12.15 hrs,	Volume=	699 cf, Depth= 0.66"
-------------------	-----------------	---------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	rea (sf)	CN	Description					
	12,642	39	>75% Gras	s cover, Go	od, HSG A			
	48	98	Paved park	ing, HSG A				
	12,690	39	Weighted A	verage				
	12,642		99.62% Per	rvious Area				
	48		0.38% Impe	ervious Area	a			
Tc (min)	Length (feet)	Slop (ft/f	e Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry, Ass	sumed		

Summary for Subcatchment P-8: Subcat P-8

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 430 cf, Depth= 1.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69"

A	rea (sf)	CN	Description		
	2,576	39	>75% Gras	s cover, Go	bod, HSG A
	684	98	Paved park	ing, HSG A	
	3,261	51	Weighted A	verage	
	2,576		79.02% Pe	vious Area	
	684		20.98% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Assumed

Summary for Subcatchment P-9: Subcat P-9

Runoff = 4.73 cfs @ 12.07 hrs, Volume= 14,716 cf, Depth= 4.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=6.69" Prepared by Allen & Major Associates Inc. HydroCAD® 10.00-24 s/n 02881 © 2018 HydroCAD Software Solutions LLC

Α	rea (sf)	CN	Description						
	11,179	39	>75% Gras	>75% Grass cover, Good, HSG A					
	27,911	98	Paved park	ing, HSG A					
	39,090	81	Weighted A	verage					
	11,179	28.60% Pervious Area							
	27,911		71.40% Imp	pervious Are	ea				
Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry, Assumed				

Summary for Reach SP1: Flow to Municipal

Inflow Are	a =	126,225 sf,	79.09% Impervious,	Inflow Depth = 1.15"	for 50-Year event
Inflow	=	2.97 cfs @	12.42 hrs, Volume=	12,077 cf	
Outflow	=	2.97 cfs @	12.42 hrs, Volume=	12,077 cf, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Reach SP2: Flow to Tracks

Inflow Area	a =	39,090 sf,	71.40% lm	pervious,	Inflow Depth = 0	.88" for 5	0-Year event
Inflow	=	3.98 cfs @	12.12 hrs, \	Volume=	2,857 cf		
Outflow	=	3.98 cfs @	12.12 hrs, \	Volume=	2,857 cf,	Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Pond 1P: Bio-Retention

Inflow Area	a =	39,090 sf,	71.40% In	npervious,	Inflow Depth =	4.52" f	or 50-Year event
Inflow	=	4.73 cfs @	12.07 hrs,	Volume=	14,716 cf		
Outflow	=	4.68 cfs @	12.12 hrs,	Volume=	14,716 cf,	, Atten=	1%, Lag= 2.7 min
Discarded	=	0.70 cfs @	12.12 hrs,	Volume=	11,859 cf		
Primary	=	3.98 cfs @	12.12 hrs,	Volume=	2,857 cf		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 119.03' @ 12.12 hrs Surf.Area= 4,372 sf Storage= 2,950 cf

Plug-Flow detention time= 33.4 min calculated for 14,706 cf (100% of inflow) Center-of-Mass det. time= 33.3 min (839.7 - 806.3)

Volume	Invert	Avail.Sto	orage Stor	age Description		
#1 #2	118.00' 115.50'	9,4 7	01 cf Pon 88 cf Filte 2,62	d Storage (Conic) er Media (Conic)Lis 25 cf Overall x 30.0	Listed below (Recal sted below (Recalc) % Voids	c)
		10,1	88 cf Tota	al Available Storage		
Elevatio (fee	n Sui t)	rf.Area (sq-ft)	Inc.Store (cubic-feet	e Cum.Store t) (cubic-feet)	Wet.Area (sq-ft)	
118.0 119.0 119.5 120.0	0 0 0 0	1,050 3,253 4,346 19,250	2,050 1,893 5,45	0 0 0 2,050 3 3,944 7 9,401	1,050 3,259 4,357 19,262	
Elevatio (fee	n Sui t)	rf.Area (sq-ft)	Inc.Store (cubic-feet	e Cum.Store t) (cubic-feet)	Wet.Area (sq-ft)	
115.5 118.0	0 0	1,050 1,050	2,62	0 0 5 2,625	1,050 1,337	
Device	Routing	Invert	Outlet De	vices		
#1 #2	Discarded Primary	115.50' 118.90'	6.500 in/h 10.0' long Head (fee	nr Exfiltration over g x 0.5' breadth Br et) 0.20 0.40 0.60	Wetted area oad-Crested Rect 0.80 1.00	angular Weir X 3.00

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.70 cfs @ 12.12 hrs HW=119.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.70 cfs)

Primary OutFlow Max=3.47 cfs @ 12.12 hrs HW=119.02' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 3.47 cfs @ 0.97 fps)

Summary for Pond CB1: CB1

Inflow Area	a =	8,538 sf,	85.40% Impervious,	Inflow Depth = 5.41	for 50-Year event
Inflow	=	1.19 cfs @	12.07 hrs, Volume=	3,846 cf	
Outflow	=	1.19 cfs @	12.07 hrs, Volume=	3,846 cf, Att	en= 0%, Lag= 0.0 min
Primary	=	1.19 cfs @	12.07 hrs, Volume=	3,846 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.58' @ 12.07 hrs Flood Elev= 119.72'

14 Driver A40.00 40.00 Devel 40.00 ODD environment 400.00	
#1 Primary 116.92 12.0 Round Cuivert L= 163.0 CPP, projecting, no headwall, Ke= 0.90 Inlet / Outlet Invert= 116.92 / 115.62 S= 0.0080 1/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf)0

Primary OutFlow Max=1.15 cfs @ 12.07 hrs HW=117.56' (Free Discharge) 1=Culvert (Inlet Controls 1.15 cfs @ 2.15 fps)

Summary for Pond CB2: CB2

Inflow Area	a =	15,604 sf,	89.69% Impervious,	Inflow Depth = 5.7	'5" for 50-Year event
Inflow	=	2.26 cfs @	12.07 hrs, Volume=	7,475 cf	
Outflow	=	2.26 cfs @	12.07 hrs, Volume=	7,475 cf, A	Atten= 0%, Lag= 0.0 min
Primary	=	2.26 cfs @	12.07 hrs, Volume=	7,475 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.13' @ 12.07 hrs Flood Elev= 119.43'

Device	Routina	Invert	Outlet Devices

 #1
 Primary
 116.06'
 12.0" Round Culvert L= 45.0'
 CPP, projecting, no headwall, Ke= 0.900

 Inlet / Outlet Invert= 116.06' / 115.61'
 S= 0.0100 '/'
 Cc= 0.900

 n= 0.013
 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.18 cfs @ 12.07 hrs HW=117.09' (Free Discharge) 1=Culvert (Inlet Controls 2.18 cfs @ 2.77 fps)

Summary for Pond CB3: CB3

Inflow Area	a =	9,350 sf,	76.88% Impervious,	Inflow Depth = 4.85"	for 50-Year event
Inflow	=	1.20 cfs @	12.07 hrs, Volume=	3,776 cf	
Outflow	=	1.20 cfs @	12.07 hrs, Volume=	3,776 cf, Atte	en= 0%, Lag= 0.0 min
Primary	=	1.20 cfs @	12.07 hrs, Volume=	3,776 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.71' @ 12.07 hrs Flood Elev= 119.33'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.05'	12.0" Round Culvert L= 41.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 115.05' / 114.64' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.16 cfs @ 12.07 hrs HW=115.69' (Free Discharge) 1=Culvert (Inlet Controls 1.16 cfs @ 2.16 fps)

Summary for Pond CB4: CB4

Inflow Area = 12,212 sf, 85.18% Impervious, Inflow Depth = 5.41" for 50-Year event Inflow = 1.70 cfs @ 12.07 hrs, Volume= 5,501 cf Outflow = 1.70 cfs @ 12.07 hrs, Volume= 5,501 cf, Atten= 0%, Lag= 0.0 min Primary = 1.70 cfs @ 12.07 hrs, Volume= 5,501 cf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.63' @ 12.07 hrs Flood Elev= 119.29'
Device Routing Invert Outlet Devices #1 Primary 114.79' 12.0" Round Culvert L= 19.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.79' / 114.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
Primary OutFlow Max=1.64 cfs @ 12.07 hrs HW=115.61' (Free Discharge) -1=Culvert (Barrel Controls 1.64 cfs @ 3.25 fps)
Summary for Pond CB5: CB5
Inflow Area = 9,880 sf, 81.63% Impervious, Inflow Depth = 5.18" for 50-Year event Inflow = 1.34 cfs @ 12.07 hrs, Volume= 4,265 cf Outflow = 1.34 cfs @ 12.07 hrs, Volume= 4,265 cf, Atten= 0%, Lag= 0.0 min Primary = 1.34 cfs @ 12.07 hrs, Volume= 4,265 cf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.50' @ 12.07 hrs Flood Elev= 119.59'
Device Routing Invert Outlet Devices
#1 Primary 116.79' 12.0" Round Culvert L= 72.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 116.79' / 116.21' S= 0.0081 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
Primary OutFlow Max=1.29 cfs @ 12.07 hrs HW=117.48' (Free Discharge) -1=Culvert (Inlet Controls 1.29 cfs @ 2.23 fps)
Summary for Pond CB6: CB6
Inflow Area = 16,022 sf, 84.15% Impervious, Inflow Depth = 5.41" for 50-Year event Inflow = 2.23 cfs @ 12.07 hrs, Volume= 7,218 cf Outflow = 2.23 cfs @ 12.07 hrs, Volume= 7,218 cf, Atten= 0%, Lag= 0.0 min Primary = 2.23 cfs @ 12.07 hrs, Volume= 7,218 cf
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.35' @ 12.07 hrs

Flood Elev= 119.02'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.30'	12.0" Round Culvert L= 64.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 116.30' / 115.96' S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.15 cfs @ 12.07 hrs HW=117.32' (Free Discharge) -1=Culvert (Barrel Controls 2.15 cfs @ 3.33 fps)

Summary for Pond CDS1: CDS1

Inflow Area =	=	24,142 sf,	88.17% Impervious	, Inflow Depth = 5	.63" for 50-Year event
Inflow =	3	.45 cfs @	12.07 hrs, Volume=	11,322 cf	
Outflow =	3	.45 cfs @	12.07 hrs, Volume=	11,322 cf,	Atten= 0%, Lag= 0.0 min
Primary =	3	.45 cfs @	12.07 hrs, Volume=	11,322 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Peak Elev= 117.33' @ 12.07 hrs Flood Elev= 120.34'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.51'	12.0" Round Culvert L= $60.0'$ CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.51' / 115.03'$ S= $0.0080' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.32 cfs @ 12.07 hrs HW=117.25' (Free Discharge) -1=Culvert (Inlet Controls 3.32 cfs @ 4.23 fps)

Summary for Pond CDS2: CDS2

Inflow Are	ea =	31,442 sf, 81.60% Impervious,	Inflow Depth = 5.17" for 50-Year event
Inflow	=	4.24 cfs @ 12.07 hrs, Volume=	13,542 cf
Outflow	=	4.24 cfs @ 12.07 hrs, Volume=	13,542 cf, Atten= 0%, Lag= 0.0 min
Primary	=	4.24 cfs @ 12.07 hrs, Volume=	13,542 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 117.04' @ 12.07 hrs Flood Elev= 119.33'

Device	Routing	Invert	Outlet Devices
#1	Primary	114.54'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.54' / 114.46' S= 0.0080 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior. Flow Area= 0.79 sf

Primary OutFlow Max=4.08 cfs @ 12.07 hrs HW=116.91' (Free Discharge)

Summary for Pond CDS3: CDS3

Inflow Area	a =	16,022 sf, 84.15% Impervious	, Inflow Depth = 5.41" for 50-Year event
Inflow	=	2.23 cfs @ 12.07 hrs, Volume=	7,218 cf
Outflow	=	2.23 cfs @ 12.07 hrs, Volume=	7,218 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.23 cfs @ 12.07 hrs, Volume=	7,218 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.42' @ 12.07 hrs Flood Elev= 120.73'

Device	Routing	Invert	Outlet Devices
#1	Primary	115.37'	12.0" Round Culvert L= $68.0'$ CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $115.37' / 114.84'$ S= $0.0078' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.15 cfs @ 12.07 hrs HW=116.39' (Free Discharge) -1=Culvert (Inlet Controls 2.15 cfs @ 2.74 fps)

Summary for Pond DMH2: DMH2

Inflow Area	a =	9,880 sf,	81.63% Imperv	ious, Inflow D	epth = 5	.18" for 50)-Year event
Inflow	=	1.34 cfs @	12.07 hrs, Volui	me=	4,265 cf		
Outflow	=	1.34 cfs @	12.07 hrs, Volui	me=	4,265 cf,	Atten= 0%,	Lag= 0.0 min
Primary	=	1.34 cfs @	12.07 hrs, Volui	me=	4,265 cf		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.83' @ 12.07 hrs Flood Elev= 120.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	116.12'	12.0" Round Culvert L= 184.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 116.12' / 114.64' S= 0.0080 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.29 cfs @ 12.07 hrs HW=116.81' (Free Discharge) -1=Culvert (Inlet Controls 1.29 cfs @ 2.23 fps)

Summary for Pond DMH4: DMH4

Inflow Ar	ea =	110,275 sf, 89.86% Impervious,	Inflow Depth = 1.19" for 50-Year event
Inflow	=	2.84 cfs @ 12.44 hrs, Volume=	10,949 cf
Outflow	=	2.84 cfs @ 12.44 hrs, Volume=	10,949 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.84 cfs @ 12.44 hrs, Volume=	10,949 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 114.87' @ 12.44 hrs Flood Elev= 121.58'

Device	Routing	Invert	Outlet Devices
#1	Primary	113.46'	12.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 113.46' / 112.40' S= 0.0105 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.84 cfs @ 12.44 hrs HW=114.86' (Free Discharge) 1=Culvert (Inlet Controls 2.84 cfs @ 3.61 fps)

Summary for Pond INFIL1: INFIL. #1

Inflow Area	a =	110,275 sf	, 89.86% Impervious,	Inflow Depth = 5.75 "	for 50-Year event
Inflow	=	15.79 cfs @	12.07 hrs, Volume=	52,870 cf	
Outflow	=	4.01 cfs @	12.44 hrs, Volume=	52,870 cf, Atte	n= 75%, Lag= 21.9 min
Discarded	=	1.17 cfs @	12.44 hrs, Volume=	41,921 cf	-
Primary	=	2.84 cfs @	12.44 hrs, Volume=	10,949 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.21' @ 12.44 hrs Surf.Area= 6,699 sf Storage= 16,206 cf Flood Elev= 118.00' Surf.Area= 6,699 sf Storage= 24,649 cf

Plug-Flow detention time= 59.6 min calculated for 52,833 cf (100% of inflow) Center-of-Mass det. time= 59.6 min (827.2 - 767.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	113.00'	5,897 cf	77.00'W x 87.00'L x 5.00'H Field A
			33,495 cf Overall - 18,751 cf Embedded = 14,744 cf x 40.0% Voids
#2A	113.00'	18,751 cf	CMP Round 60 x 44 Inside #1
			Effective Size= 60.0"W x 60.0"H => 19.63 sf x 20.00'L = 392.7 cf
			Overall Size= 60.0"W x 60.0"H x 20.00'L
			44 Chambers in 11 Rows
			75.00' Header x 19.63 sf x 1 = 1,472.6 cf Inside
		24 640 cf	Total Available Storage

24,649 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.80'	12.0" Round Culvert L= 124.0' CPP, projecting, no headwall, Ke= 0.900
	-		Inlet / Outlet Invert= 114.80' / 113.56' S= 0.0100 // Cc= 0.900 n= 0.005, Flow Area= 0.79 sf
#2	Discarded	113.00'	6.500 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=1.17 cfs @ 12.44 hrs HW=116.20' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.17 cfs)

Primary OutFlow Max=2.84 cfs @ 12.44 hrs HW=116.20' (Free Discharge)

Summary for Pond WQ1: WQ1

Inflow Ar	ea =	40,164 sf, 86.57% Impervious,	Inflow Depth = 5.54" for 50-Year event
Inflow	=	5.69 cfs @ 12.07 hrs, Volume=	18,539 cf
Outflow	=	5.69 cfs @ 12.07 hrs, Volume=	18,539 cf, Atten= 0%, Lag= 0.0 min
Primary	=	5.69 cfs @ 12.07 hrs, Volume=	18,539 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.08' @ 12.07 hrs Flood Elev= 119.94'

Device	Routina	Invert	Outlet Devices

#1 Primary 114.74' **24.0" Round Culvert** L= 8.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.74' / 114.67' S= 0.0087 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=5.48 cfs @ 12.07 hrs HW=116.05' (Free Discharge) ←1=Culvert (Barrel Controls 5.48 cfs @ 3.57 fps)

Summary for Pond WQ2: WQ2

Inflow Area	a =	31,442 sf	81.60% Impervious,	Inflow Depth = 5.17"	for 50-Year event
Inflow	=	4.24 cfs @	12.07 hrs, Volume=	13,542 cf	
Outflow	=	4.24 cfs @	12.07 hrs, Volume=	13,542 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	4.24 cfs @	12.07 hrs, Volume=	13,542 cf	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 115.26' @ 12.07 hrs Flood Elev= 119.89'

Device	Routing	Invert	Outlet Devices
#1	Primary	114.17'	24.0" Round Culvert L= 18.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 114.17' / 114.03' S= 0.0078 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=4.08 cfs @ 12.07 hrs HW=115.24' (Free Discharge) 1=Culvert (Barrel Controls 4.08 cfs @ 3.47 fps)

Summary for Link 1L: Flow to Municipal

Inflow A	Area =	113,536 sf, 87.88% Impervious,	Inflow Depth = 1.20 "	for 50-Year event
Inflow	=	2.89 cfs @ 12.43 hrs, Volume=	11,378 cf	
Primary	/ =	2.89 cfs @ 12.43 hrs, Volume=	11,378 cf, Atte	n = 0%, Lag = 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

	APPR	oved - Na	SHUA C	TY PLANNIN	g Board
	CHAI	RMAN		DA	TE
	SECF	RETARY		<i>D</i> A	TE
	DATE	UF APPRO	JVAL		
	M A S Q ARC	A R K U A		104 Congress Portsmouth, PH: 603.5	5 St., STE 203 NH 03801 501.0202
	REV	DATE	DESCR	IPTION	
	ZJBV c/o 300 MAN	Vowner: / Propert Joseph's I Gay Stre Nchester	TIES, LLO Equipn Eet , NH 03	C 1ENT 8103	
	PROJECT: RESI	DENTI 159 TI N	AL D EMP IASHU	DEVELOI LE STRE JA, NH	PMENT ET
	PROJECT N	NO. 2	2596-01	DATE:	MAY 30, 2019
	SCALE:		1" = 30'	DWG.: C-2596	-01_Post-Watershed
	DESIGNED	BY:	ΔΜ		MM
	PREPARED B AI AI AS civil & s environm	Y: LLEN SOC tructural tental con v w w . a 1	N & CIA engin sulting l l e n	MAJ TES, 2 eering + lan + landscape m a j o r . c EY ROAD	OR INC. d surveying architecture o m
	WORLDN	400 MANO TH FA	0 HARV CHESTE EL: (603) AX: (603)	EX KOAD R, NH 03103 627-5500 627-5501 E. MA	VCHESTED NU
120	WOBURN, THIS DRAW CLIENT/CLIEI PROVIDED C MEDIA FOR APPLICATION MAGNETIC I OTHERWISE, INDICATION MEDIA. PRI SPECIFICATIO ALLEN & MA	MA CLA VING HAS BI NT'S REPRES OPIES OF DRA N TO THIS PR NFORMATION ALLEN & MA OF THE DOC INTED REPRE DNS ISSUED JOR ASSOCIA	EEN PREP ENTATIVE WINGS AI INFORMA ROJECT. D I MAY BE AJOR ASS CUMENT'S SENTATIC SHALL BE TES, INC.	ARED IN ELECT OR CONSULT ND SPECIFICATION FION AND USE UE TO THE POTE MODIFIED UNIN OCIATES, INC. M AUTHORSHIP ON NS OF THE I THE ONLY REC WORK PRODUCT	RONIC FORMAT. FANT MAY BE NS ON MAGNETIC FOR SPECIFIC ENTIAL THAT THE TENTIONALLY OR MAY REMOVE ALL N THE MAGNETIC DRAWINGS AND CORD COPIES OF F.
	DRAWING	G TITLE:			SHEET No.
	PO	ST-DEVE	LOPN	1ENT	WS-2
	Copy	VATERSH vright©2019 Alle	HED PI	_AN ssociates, Inc.	

APPENDIX 6.1

OPERATION AND MAINTENANCE

6.1 OPERATION AND MAINTENANCE PLAN

General Information

Allen & Major Associates, Inc. has prepared the following Operation and Maintenance Plan for the residential development located at 159 Temple Street, Nashua, NH. The plan is broken down into the following major sections. The first section gives general information about ownership and responsibility (General Information). The next section describes the erosion and sediment control measures used during construction (Construction Period). The next section describes the erosion and sediment control measures used during construction (Construction Period). The third section describes the long-term pollution prevention measures (Long Term Pollution Prevention Plan). The last section describes the maintenance requirements for the stormwater management practices. (Maintenance Plan).

Contact Information Stormwater Management System Owner: ZJBV Proper 300 Gay Stree

ZJBV Properties, LLC 300 Gay Street Manchester, NH 03103 603-641-8608

Notification Procedures for Change of Responsibility for O&M

The Stormwater Management System (SMS) for this project is owned by ZJBV Properties, LLC. The owner shall be legally responsible for the long-term operation and maintenance of this SMS as outlined in this Operation and Maintenance (O&M) Plan. Should ownership of the SMS change, the owner will continue to be responsible until the succeeding owner shall notify the City that the succeeding owner has assumed such responsibility. Upon subsequent transfers, the responsibility shall continue to be that of transferring owner until the transferee owner notifies the City of Nashua of its assumption of responsibility.

In the event the SMS will serve multiple lots/owners, such as the subdivision of the existing parcel, the owner(s) shall establish an association or other legally enforceable arrangements under which the association or a single party shall have legal responsibility for the operation and maintenance of the entire SMS.

Construction Period

- 1. Contact the City of Nashua Engineering Department at least two (2) weeks prior to start of construction.
- 2. Install the, tubular sediment barrier, catch basin filters, and construction fencing as shown on the Site Preparation Plan, and the Erosion Control Plan. (See Sheets C-101 & C-105 of the site plan set)
- 3. Site access shall be achieved only from the designated construction entrances.
- 4. All erosion control measures shall be inspected weekly and after all rainfall events, and shall be maintained, repaired or replaced as required or at the direction of the owner's engineer, or the City's Engineer.
- 5. Sediment accumulation up-gradient of tubular sediment barrier greater than 6" in depth shall be removed and disposed of in accordance with all applicable regulations.
- 6. If it appears that sediment is exiting the site, catch basin filters shall be installed in all catch basins adjacent to the site. Sediment accumulation on all adjacent catch basin inlets shall be removed and the catch basin filters shall be replaced if torn or damaged.
- 7. The contractor shall comply with the General and Alteration of Terrain notes listed on the Erosion Control Plan. (C-105)

Post-Development Activities

- 1. Upon completion of all terrain alteration activities that direct stormwater to a particular practice, the responsible party shall initiate the O&M activities.
- 2. Paved Areas Paved areas should be swept as part of the routine site maintenance. Pavement sweeping is an excellent source control for sedimentation to the existing drainage system and is typically performed in the spring of each year following the snow melt.
- 3. Paved Areas Salt for de-icing on the paved areas during the winter months shall be limited to the minimum amount practicable. Sand containing the minimum amount of calcium chloride (or approved equivalent) needed for handling may be applied as part of the routine winter maintenance activities.
- 4. All sediments removed from site drainage facilities shall be disposed of properly, and in accordance with applicable local and state regulations.
- 5. All vegetated areas on the site shall be stabilized and maintained to control erosion. Any disturbed areas shall be re-seeded as soon as practicable.
- 6. Work within any drainage structures shall performed in accordance with the latest OSHA regulations, and only by individuals with appropriate OSHA certification.
- 7. Maintenance Responsibilities All post-construction maintenance activities shall be documented and kept on file and made available to the proper City and State authorities upon request.
- 8. If ownership of the property is transferred, the new owner(s) shall become the responsible party.

Long Term Pollution Prevention Plan

The Long Term Pollution Prevention Plan (LTPPP) has been prepared and incorporated as part of the Operation and Maintenance of the Stormwater Management System. The purpose of the LTPPP is to identify potential sources of pollution that may affect the quality of stormwater discharges, and to describe the implementation of practices to reduce the pollutants in stormwater discharges. The following items describe the source control and proper procedures for the LTPPP.

Housekeeping

The proposed site development has been designed to maintain a high level of water quality treatment for all stormwater discharge and groundwater. An Operation and Maintenance (O&M) plan has been prepared and is included in this section of the report. The Owner (or its designee) is responsible for adherence to the O&M plan in a strict and complete manner.

Storing of Materials and Waste Products

There are no proposed exterior (un-covered) storage areas. The trash and waste program for the site includes a dedicated space adjacent to the building for waste & recyclables, which will be placed in covered dumpsters inside of a fenced enclosure.

Vehicle Washing

Outdoor vehicle washing has the potential to result in high loads of nutrients, metals, and hydrocarbons during dry weather conditions, as the detergent-rich water used to wash the grime off the vehicle enters the stormwater drainage system. The proposed site redevelopment does not have accommodations for outdoor car washing.

Maintenance of Lawns, Gardens and other Landscaped Areas

It should be recognized that this is a general guideline towards achieving high quality and well groomed landscaped areas. The grounds staff / landscape contractor must recognize the shortcomings of a general maintenance plan such as this, and modify and/or augment it based on weekly, monthly, and yearly observations. In order to ensure the highest quality conditions, the staff must also recognize and appreciate the need to be aware of the constantly changing conditions of the landscaping and be able to respond to them on a proactive basis. No trash or landscape debris (including lawn clippings) shall be stored or dumped within the landscaped or naturalized areas. Information regarding the removal of invasive species can be found in the appendix of this report.

Fertilizer

Maintenance practices should be aimed at reducing environmental, mechanical and pest stresses to promote healthy and vigorous growth. When necessary, pest outbreaks should be treated with the most sensitive control measures available. Synthetic chemical controls should be used only as a last resort to organic and biological control methods. Fertilizer, synthetic chemical controls and pest management applications (when necessary) shall be performed only by licensed applicators in accordance with the manufacturer's label instructions when environmental conditions are conducive to controlled product application.

Only slow-release organic fertilizers should be used in the landscaped areas to limit the amount of nutrients that could enter downstream resource areas. Fertilization of developed areas on site will be performed within manufacturers labeling instructions and shall not exceed an NPK ratio of 1:1:1 (i.e. Triple 10 fertilizer mix), considered a low nitrogen mixture. Additionally, the fertilizer will include a slow release element.

Suggested Aeration Program

In-season aeration of lawn areas is good cultural practice, and is recommended whenever feasible. It should be accomplished with a solid thin tine aeration method to reduce disruption to the use of the area. The depth of solid tine aeration is similar to core type, but should be performed when the soil is somewhat drier for a greater overall effect.

Depending on the intensity of use, it can be expected that all landscaped lawn areas will need aeration to reduce compaction at least once per year. The first operation should occur in late May following the spring season. Methods of reducing compaction will vary based on the nature of the compaction. Compaction on newly established landscaped areas is generally limited to the top 2-3" and can be alleviated using hollow core or thin tine aeration methods.

Landscape Maintenance Program Practices:

	 Mow a minimum of once a week in spring, to a height of 2" to 2 1/2" high. Mowing should be frequent enough so that no more than 1/3 of grass blade is removed at each mowing. The top growth supports the roots; the shorter the grass is cut, the less the roots will grow. Short cutting also dries out the soil and encourages weeds to germinate.
Lawn	 Mow approximately once every two weeks from July 1st to August 15th depending on lawn growth.
	 Mow on a ten-day cycle in fall, when growth is stimulated by cooler nights and increased moisture.
	 Do not remove grass clippings after mowing.
	• Keep mower blades sharp to prevent ragged cuts on grass leaves, which cause a brownish appearance and increase the chance for disease to enter a leaf.
	• Mulch not more than 3" depth with shredded pine or fir bark.
0 11	• Hand prune annually, immediately after blooming, to remove 1/3 of the above-ground biomass (older stems). Stem removals to occur within 6" of the ground to open up shrub and maintain two-year wood (the blooming wood).
bindos	 Fertilize with ½ lb. slow-release fertilizer (see above section on Fertilizer) every second year.
	 Hand prune evergreen shrubs only as needed to remove dead and damaged wood and to maintain the naturalistic form of the shrub. Never mechanically shear evergreen shrubs.
	 Provide aftercare for new tree plantings for the first three years.
	• Do not fertilize trees, it artificially stimulates them (unless tree health warrants).
Trees	• Water once a week for the first year; twice a month the second, once a month the third year.
	Prune trees on a four-year cycle.

Management of Deicing Chemicals and Snow

Snow shall only be stockpiled on site within the snow storage areas depicted on the Layout & Materials Plan. If the stockpiles of snow do not fit within the designated areas, then snow will be disposed off-site. It will be the responsibility of the snow removal contractor to properly dispose of transported snow according NHDES. It will be the responsibility of the snow removal contractor to follow these guidelines and all applicable laws and regulations.

The owner (or its designee) will be responsible for the clearing of the sidewalk and building entrances. The Owner may be required to use a de-icing agent such as potassium chloride to maintain a safe walking surface; however, these are to be used at the minimum amount practicable. The de-icing agent for the walkways and building entrances will be kept within the storage rooms located within the buildings. De-icing agents will not be stored outside. Additional information can be found in the Salt Minimization Plan, in the appendix of this report.

Maintenance Plan

Documentation

Maintenance documents shall include a completed maintenance checklist (attached) that will include any applicable notes or other documents as described in this section.

Stormwater Collection System:

The stormwater collection system is a series of inlets located at low points within the limits of the paved and landscape areas. The inlets consist of catch basins and one area drain. All of the stormwater inlets connect to the on-site drainage systems. The onsite drainage system consists of one subsurface infiltration system and one bioretention system which receives runoff only from the parking bays to the east of building 2. All collection devices shall be inspected and maintained annually as noted on the attached maintenance log. The stormwater runoff from the building rooftop is collected using gutters, downspouts and roof drains.

Underground Infiltration

There is one proposed underground infiltration system on-site. The proposed system consists of 60" Aluminized Perforated Corrugated Metal Pipe. Copies of the maintenance requirements are included in the following sections.

Bioretention System

There is one bioretention system proposed along the eastern property line of the site. The bioretention system consists of a shallow depressed area with native plantings and a 2' thick soil filter which will help to treat and infiltrate stormwater. The bioretention system is designed with an overflow weir which will discharge to overland flow.

Operation and Maintenance Schedule Summary

The following is a summary of the maintenance schedule for each of the stormwater BMPs. Note all anomalies, signs of degradation, or corrective actions on the annual Maintenance Checklist.

BMP	MAINTENANCE ITEM	FREQUENCY
Pavement Sweeping	Perform sweeping. No Sand. Distribute de-icing agents and inspect according to narrative.	Inspect /sweep twice per year (Early spring & late fall)
Catch Basins	Inspect for damage to frame and grate, and hoods. Remove sediment and trash when depth exceeds 50% of the sump.	Inspect yearly, remove sediment as needed.
Bioretention System	Inspect for trash and debris. If system does not drain within 72 hours following a rainfall event, contact a qualified professional to assess the system. Replace dead or diseased vegetation as needed. Remove any invasive species.	Inspect twice yearly and after a rain event of 2.5"+, remove trash and debris as needed.
Infiltration System	Inspect for sediment accumulation. Remove sediment using a jet-vac and in accordance with the manufacturers' recommendations.	Inspect yearly, remove sediment as needed.
Jellyfish Filters	Inspect structure for damage, debris, oil, and sediment. Inspect cartridge lids, replace missing or damaged cartridges. Remove and rinse filters as needed. Vacuum structure with filters removed.	Inspect following construction, twice during the first year, and a minimum of once per year thereafter
Hydrodynamic Separators (CDS)	Inspect for damage to frames and covers. Remove sediment and trash in accordance with manufacturers' recommendations.	Inspect yearly, remove trash and sediment as needed.

The Owner or its designee shall keep records of the maintenance of the Stormwater BMPs on a yearly basis. Maintenance documents shall include a completed maintenance checklist.

Supplemental Information:

-Operation and Maintenance Plan Schedule

-Operation and Maintenance Log Forms

-Operation and Maintenance Plan Log Forms (During Construction)

-Jellyfish Filter Maintenance Guide

-CDS Maintenance Guide

-CMP Infiltration Maintenance

-Control of Invasive Plants

OPERATION & MAINTENANCE PLAN SCHEDULE

Party Responsible for O & M Plan: ZJBV Properties, LLC

Project: Temple Street Residential Development

Address: #159 Temple Street, Nashua, NH

Date: _____

Address: TBD

Main Phone Number: TBD

O&M Main Point of Contact: TBD

Structure or Task Maintenance Activity Schedule		Sabadula	Notos	Inspection Performed		Inspection
		Notes	Date:	By:	Results	
Street Sweeping	Sweep, power broom or vacuum paved areas.	 Sweeping should be conducted a minimum of twice a year. Early fall Immediately following spring snowmelt to remove sand and other debris. 	Since contaminants accumulate within 12 inches of the curb line. Street cleaning operations should concentrate on cleaning curb and gutter lines for maximum pollutant removal efficiency. Other areas can also be swept periodically, probably on a less regular basis.			
Deep Sump Catch Basins	Inspect frames and grates. Empty sumps using a vacuum-truck.	Inspected annually, cleaned as needed when sediment reaches 50% of the sump depth.	Sediment should be removed when accumulated to a depth of 50% of the sump. Sediment and debris shall be removed by a vacuum truck. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations			
Infiltration System	Inspect for sediment build-up. Remove sediment using a jet- vac.	Inspected annually, cleaned as needed when sediment reaches a depth of 3"	Sediment should be removed when accumulated to a depth of 3". Sediment and debris shall be removed by a vacuum truck. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations			
Bioretention System	Inspect for trash and debris. Remove as necessary.	Inspect twice annually and following any rainfall event exceeding 2.5" in a 24-hour period, with maintenance or rehabilitation as necessary.	Remove trash and debris during each inspection. Contact a qualified professional if the Bioretention System does not drain completely within 72 hours. Replace dead or diseased vegetation and remove invasive species.			
Jellyfish Filter	Inspect frames, rinse filters, vacuum structure	Inspect annually, repair, rinse, and clean as needed.	Sediment should be removed when accumulated to a depth of 12". Sediment and debris shall be removed by a vacuum truck. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations			
Hydrodynamic Separators (CDS)	Inspect frames and covers. Empty sediment storage chamber using a vacuum truck.	Inspected annually, clean as needed when sediment reaches a depth of 12".	Sediment should be removed when accumulated to a depth of 12". Sediment and debris shall be removed by a vacuum truck. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations			
Mosquito Control	CB management targeted larvicide treatment to CB's and all storm drains to control mosquitoes in their aquatic stages.		Surveillance is a non-chemical inspection method that involves classification of mosquito breeding sites, larval presents, and survey.			

Notes: 1. This O&M Plan Schedule must be maintained by the owner and remain in onsite office at all times.

2. Owner must keep the past 7 years of maintenance and inspection records on site.

TEMPLE STREET RESIDENTIAL DEVELOPMENT 159 TEMPLE STREET NASHUA, NH

MAINTENANCE LOG FORM

INSPECTOR:_____

DATE MAINTENANCE PERFORMED:_____

INSPECTOR'S QUALIFICATIONS:

MAINTENANCE LOG

TYPE OF MAINTENANCE PERFORMED	DATE SINCE LAST MAINTENANCE	STAFF MEMBER OR CONTRACTOR WHO PERFORMED MAINTENANCE	CONDITION	ISSUE RESOLVED (YES/NO)
FOLLOW-UP REQU	IRED:	•	•	•

TO BE PERFORMED BY:_____ ON OR BEFORE:_____

NOTES:

- 1. Attach copies of maintenance work orders.
- 2. Owner must keep a minimum of the past 7 years of inspections / operations and maintenance records onsite.

Operation and Maintenance Plan Log During Construction

Residential Development **Project:** 159 Temple Street Address: Nashua, NH

Company Responsible for O&M During Construction: Individual responsible for Inspections & Log: Address: Phone (24 Hour Contact Number):

Erosion Control Inspection Qualifications:

	Weekly Inspection	Inspection Performed				
Erosion Control Measures	Schedule/or After Rainfall	Date	By:	Method	Notes/Remarks	
Temporary Tree Protection				Review temporary tree protection fencing and trunk protection. Verify no machinery or construction materials are stored within the fenced area. Repair any damaged fencing. Document any damage to tree. Contact client's construction representative with any tree trunk or root damage.		
Tubular Sediment Barrier				Sediment accumulation up-gradient of the tubular sediment barrier greater than 6" in depth shall be removed and disposed of in accordance with all applicable regulations		
Catch Basin Filter				When the sediment is exiting the site, and as shown on the plan, silt sacks shall be installed in all catch basins adjacent to the site. Sediment accumulation on all catch basin inlets shall be removed and the silt sack replaced if torn or damaged. Remove silt and replace damage silt sacks at each catch basin.		
Construction Entrance				When silt is accumulating in the construction entrance, then the construction entrance shall be cleaned and stone replaced as necessary.		
Catch Basin				 Grates clear of debris Inlet and outlet clear of debris Clear of oil or grease Flow clear of siltation 		
Infiltration System				No discharge of stormwater is allowed to the subsurface infiltration system during construction. The infiltration system shall remain off-line until the final stabilization is complete.		

Note: Operation and maintenance plan log shall be documented by contractor and kept within onsite construction office. Upon request, log and operation and maintenance files shall be made available to the City, State, and Federal authorities.

JellyFish® Filter Maintenance Guide

JELLYFISH® FILTER MANHOLE CONFIGURATIONS INSPECTION & MAINTENANCE GUIDE

TABLE OF CONTENTS

Inspection and Maintenance Overview	3
Inspection Procedure	4
Maintenance Procedure	4
Cartridge Assembly & Cleaning	5
Jellyfish Filter & Components	6
Inspection Process	7

1.0 Inspection and Maintenance Overview

The primary purpose of the Jellyfish® Filter is to capture and remove pollutants from stormwater runoff. As with any filtration system, these pollutants must be removed to maintain the filter's maximum treatment performance. Regular inspection and maintenance are required to insure proper functioning of the system.

Maintenance frequencies and requirements are site specific and vary depending on pollutant loading. Additional maintenance activities may be required in the event of non-storm event runoff, such as base-flow or seasonal flow, an upstream chemical spill or due to excessive sediment loading from site erosion or extreme runoff events. It is a good practice to inspect the system after major storm events.

Inspection activities are typically conducted from surface observations and include:

- Observe if standing water is present
- Observe if there is any physical damage to the deck or cartridge lids
- Observe the amount of debris in the Maintenance Access Wall (MAW)

Maintenance activities typically include:

- Removal of oil, floatable trash and debris
- Removal of collected sediments
- Rinsing and re-installing the filter cartridges
- Replace filter cartridge tentacles, as needed

2.0 Inspection Timing

Inspection of the Jellyfish Filter is key in determining the maintenance requirements for, and to develop a history of the site's pollutant loading characteristics. In general, inspections should be performed at the times indicated below; or per the approved project stormwater quality documents (if applicable), whichever is more frequent.

- 1. Post-construction inspection is required prior to putting the Jellyfish Filter into service. All construction debris or construction-related sediment within the device must be removed, and any damage to system components repaired, before installing the filter cartridges.
- 2. A minimum of two inspections during the first year of operation to assess the sediment and floatable pollutant accumulation, and to ensure proper functioning of the system.
- 3. Inspection frequency in subsequent years is based on the inspection and maintenance plan developed in the first year of operation. Minimum frequency should be once per year.
- 4. Inspection is recommended after each major storm event.
- 5. Inspection is required immediately after an upstream oil, fuel or other chemical spill.

3.0 Inspection Procedure

The following procedure is recommended when performing inspections:

- 1. Provide traffic control measures as necessary.
- 2. Inspect the MAW for floatable pollutants such as trash, debris, and oil sheen.
- Measure oil and sediment depth in several locations, by lowering a sediment probe through the MAW opening until contact is made with the floor of the structure. Record sediment depth, and presences of any oil layers.
- 4. Inspect cartridge lids. Missing or damaged cartridge lids to be replaced.
- 5. Inspect the MAW, cartridge deck, and backwash pool weir, for cracks or broken components. If damaged, repair is required.

3.1 Dry weather inspections

- Inspect the cartridge deck for standing water, and/or sediment on the deck.
- No standing water under normal operating conditions.
- Standing water inside the backwash pool, but not outside the backwash pool indicates that the filter cartridges need to be rinsed.

Inspection Utilitzing Sediment Probe

- Standing water outside the backwash pool may indicate a backwater condition caused by high water elevation in the receiving water body, or possibly a blockage in downstream infrastructure.
- Any appreciable sediment (≥1/16") accumulated on the deck surface should be removed.

3.2 Wet weather inspections

- Observe the rate and movement of water in the unit. Note the depth of water above deck elevation within the MAW.
- Less than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges (i.e. cartridges located outside the backwash pool).
- Greater than 6 inches, flow should be exiting the cartridge lids of each of the draindown cartridges and each of the hi-flo cartridges (i.e. cartridges located inside the backwash pool), and water should be overflowing the backwash pool weir.
- 18 inches or greater and relatively little flow is exiting the cartridge lids and outlet pipe, this condition indicates that the filter cartridges are occluded with sediment and need to be rinsed

4.0 Maintenance Requirements

Required maintenance for the Jellyfish Filter is based upon results of the most recent inspection, historical maintenance records, or the site specific water quality management plan; whichever is more frequent. In general, maintenance requires some combination of the following:

- 1. Sediment removal for depths reaching 12 inches or greater, or within 3 years of the most recent sediment cleaning, whichever occurs sooner.
- 2. Floatable trash, debris, and oil removal.
- 3. Deck cleaned and free from sediment.
- 4. Filter cartridges rinsed and re-installed as required by the most recent inspection results, or within 12 months of the most recent filter rinsing, whichever occurs sooner.
- Replace tentacles if rinsing does not restore adequate hydraulic capacity, remove accumulated sediment, or if damaged or missing. It is recommended that tentacles should remain in service no longer than 5 years before replacement.
- 6. Damaged or missing cartridge deck components must be repaired or replaced as indicated by results of the most recent inspection.
- The unit must be cleaned out and filter cartridges inspected immediately after an upstream oil, fuel, or chemical spill.
 Filter cartridge tentacles should be replaced if damaged or compromised by the spill.

5.0 Maintenance Procedure

The following procedures are recommended when maintaining the Jellyfish Filter:

- 1. Provide traffic control measures as necessary.
- 2. Open all covers and hatches. Use ventilation equipment as required, according to confined space entry procedures.
- 3. Caution: Dropping objects onto the cartridge deck may cause damage.

- 4. Perform Inspection Procedure prior to maintenance activity.
- 5. To access the cartridge deck for filter cartridge service, descend the ladder and step directly onto the deck. Caution: Do not step onto the maintenance access wall (MAW) or backwash pool weir, as damage may result. Note that the cartridge deck may be slippery.
- 6. Maximum weight of maintenance crew and equipment on the cartridge deck not to exceed 450 lbs.

5.1 Filter Cartridge Removal

- 1. Remove a cartridge lid.
- Remove cartridges from the deck using the lifting loops in the cartridge head plate. Rope or a lifting device (available from Contech) should be used. Caution: Should a snag occur, do not force the cartridge upward as damage to the tentacles may result. Wet cartridges typically weigh between 100 and 125 lbs.
- 3. Replace and secure the cartridge lid on the exposed empty receptacle as a safety precaution. Contech does not recommend exposing more than one empty cartridge receptacle at a time.

5.2 Filter Cartridge Rinsing

- 1. Remove all 11 tentacles from the cartridge head plate. Take care not to damage or break the plastic threaded nut or connector.
- 2. Position tentacles in a container (or over the MAW), with the

threaded connector (open end) facing down, so rinse water is flushed through the membrane and captured in the container.

3. Using the Jellyfish rinse tool (available from Contech) or a low-pressure garden hose sprayer, direct water spray onto the tentacle membrane, sweeping from top to bottom along the length of the tentacle. Rinse until all sediment is removed from the membrane. Caution: Do not use a high pressure sprayer or focused stream of water on the membrane. Excessive water pressure may damage the membrane.

- 4. Collected rinse water is typically removed by vacuum hose.
- 5. Reattach tentacles to cartridge head plate. Reuse O-rings and nuts, ensuring proper placement on each tentacle.

5.3 Cleaning Procedure

- 1. Perform vacuum cleaning of the Jellyfish Filter only after filter cartridges have been removed from the system. Access the lower chamber for vacuum cleaning only through the maintenance access wall (MAW) opening, being careful not to damage the flexible plastic separator skirt that is attached to the underside of the deck. The separator skirt surrounds the filter cartridge zone, and could be torn if contacted by the wand. Do not lower the vacuum wand through a cartridge receptacle, as damage to the receptacle will result.
- Vacuum floatable trash, debris, and oil, from the MAW opening. Alternatively, floatable solids may be removed by a net or skimmer.

Tentacle Rinse Using Jellyfish Rinse Tool

- 3. Pressure wash cartridge deck and receptacles to remove all sediment and debris. Sediment should be rinsed into the sump area. Take care not to flush rinse water into the outlet pipe.
- 4. Remove water from the sump area. Vacuum or pump equipment should only be introduced through the MAW.
- 5. Remove the sediment from the bottom of the unit through the MAW opening.

Vacuuming Sump Through MAW

6. For larger diameter Jellyfish Filter manholes (≥8-ft) and vaults without an MAW opening, complete sediment removal may be facilitated by removing a cartridge lid from an empty receptacle and inserting a jetting wand (not a vacuum wand) through the receptacle. Use the sprayer to rinse loosened sediment toward the vacuum hose in the MAW opening, being careful not to damage the receptacle.

- 7. After the unit is clean, re-fill the lower chamber with water if required by the local jurisdiction, and re-install filter cartridges.
- 8. Dispose of sediment, floatable trash and debris, oil, spent tentacles, and water according to local regulatory requirements.

5.4 Filter Cartridge Replacement

- Cartridges should be installed after the deck has been cleaned. It is important that the receptacle surfaces be free from grit and debris.
- If rinsing is ineffective in removing sediment from the tentacles, or if tentacles are damaged, provisions must be made to replace the spent or damaged tentacles with new tentacles. Contact Contech to order replacement tentacles.
- 3. Lower filter cartridge to the cartridge deck. Remove cartridge lid from deck and carefully lower the filter cartridge into the receptacle until head plate gasket is seated squarely in receptacle. Caution: Should a snag occur when lowering the cartridge into the receptacle, do not force the cartridge downward; damage may occur.
- 4. Replace the cartridge lid and check fit before completing rotation to a firm hand-tight attachment.

5.5 Chemical Spills

Caution: If a chemical spill has been captured, do not attempt maintenance. Immediately contact the local hazard response agency and contact Contech.

6.0 Related Maintenance Activities

Jellyfish units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.

In order for maintenance of the Jellyfish filter to be successful, it is imperative that all other components be properly maintained. The maintenance and repair of upstream facilities should be carried out prior to Jellyfish maintenance activities.

In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

7.0 Material Disposal

The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads. Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

Jellyfish Filter Components & Filter Cartridge

Jellyfish Filter Inspection and Maintenance Log

Owner:			Jellyfish Model No:		
Location:			GPS Coordinates:		
Lande Use:	Commercial:	Industrial:		Service Station:	
	Roadway/Highway:	Airport:		Residential:	

Date/Time:			
Inspector:			
Maintenance Contractor:			
Visible Oil Present: (Y/N)			
Oil Quantity Removed:			
Floatable Debris Present: (Y/N)			
Floatable Debris Removed: (Y/N)			
Water Depth in Backwash Pool			
Draindown Cartridges externally rinsed and recommissioned: (Y/N)			
New tentacles put on Cartridges: (Y/N)			
Hi-Flo Cartridges externally rinsed and recommissioned: (Y/N)			
New tentacles put on Hi-Flo Cartridges: (Y/N)			
Sediment Depth Measured: (Y/N)			
Sediment Depth (inches or mm):			
Sediment Removed: (Y/N)			
Cartridge Lids intact: (Y/N)			
Observed Damage:			
Comments:			

800.338.1122 www.ContechES.com

Support

- Drawings and specifications are available at ContechES.com/jellyfish.
- Site-specific design support is available from Contech Engineered Solutions.

©2017 Contech Engineered Solutions LLC

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, wastewater treatment and earth stabilization products. For information on other Contech segment offerings, visit ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH: SEE CONTECH: SEE CONTECH.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; related foreign patents or other patents pending.

Jellyfish Maintenance DRAFT 2/17

CDS® Inspection and Maintenance Guide

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.

CDS Model	Diameter		Distance from to Top of S	Distance from Water Surface Sediment to Top of Sediment Pile Storage Capaci			
	ft	m	ft	m	yd3	m3	
CDS2015-4	4	1.2	3.0	0.9	0.5	0.4	
CDS2015	5	1.5	3.0	0.9	1.3	1.0	
CDS2020	5	1.5	3.5	1.1	1.3	1.0	
CDS2025	5	1.5	4.0	1.2	1.3	1.0	
CDS3020	6	1.8	4.0	1.2	2.1	1.6	
CDS3030	6	1.8	4.6	1.4	2.1	1.6	
CDS3035	6	1.8	5.0	1.5	2.1	1.6	
CDS4030	8	2.4	4.6	1.4	5.6	4.3	
CDS4040	8	2.4	5.7	1.7	5.6	4.3	
CDS4045	8	2.4	6.2	1.9	5.6	4.3	

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Support

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.
- ©2010 CONTECH Stormwater Solutions

CONTECH Construction Products Inc. provides site solutions for the civil engineering industry. CONTECH's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other CONTECH division offerings, visit contech-cpi.com or call 800.338.1122

Nothing in this catalog should be construed as an expressed warranty or an implied warranty of merchantability or fitness for any particular purpose. See the CONTECH standard quotation or acknowledgement for applicable warranties and other terms and conditions of sale.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.

cdsMaintenance 01/10

800.925.5240 contechstormwater.com

CDS Inspection & Maintenance Log

CDS Mode	l:		Lo	ocation:	
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than eighteen inches the system should be cleaned out. Note: To avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

Inspection & Maintenance Guide for

Corrugated Steel Pipe Underground Infiltration Systems

Safety: Before entering into any storm sewer or underground detention/infiltration system check to make sure all OSHA and local safety regulations and guidelines are observed during the maintenance process. Hard hats, safety glasses, steel-toed boots and any other appropriate personal protective equipment shall be worn at all times.

Frequency: Inspections shall be completed annually.

Inspection Check List:

 $\sqrt{\text{Check quality of parking lot surface.}}$

- Is there evidence of potholes or sinkholes?
- Is there evidence of an unusual amount of silt and soil build-up on the surface?

 $\sqrt{\text{Check for pipe symmetry (uniform curvature)}}$.

• Flexible steel pipe is designed to handle minor deflections. Pipe structures deflected more than 7% from design shape, or those that show localized distortions may require further investigation.

 $\sqrt{\text{Check for pipe joint quality.}}$

• Is there evidence of backfill material infiltrating into the pipe structure?

√ Silt Deposition

• If accumulated silt is interfering with the operation of the infiltration system (i.e.: blocking infiltration holes or if silt deposition has significantly reduced the storage capacity of the system) it should be removed. This can be accomplished by the use of a "clam shell" device or vactor truck.

Maintenance:

Underground storm water detention and retention systems should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size or configuration of the system.

Inspection

Inspection is the key to effective maintenance and is easily performed. CONTECH recommends ongoing quarterly inspections of the accumulated sediment. Sediment deposition and transport may vary from year to year and quarterly inspections will help insure that systems are cleaned out at the appropriate time. Inspections should be performed more often in the winter months in climates where sanding operations may lead to rapid accumulations, or in equipment wash-down areas. It is very useful to keep a record of each inspection. A sample inspection log is included for your use.

Systems should be cleaned when inspection reveals that accumulated sediment or trash is clogging the discharge orifice. CONTECH suggests that all systems be designed with an access/inspection manhole situated at or near the inlet and the outlet orifice. Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regarding confined space entry and OSHA regulations should be followed.

<u>Cleaning</u>

Maintaining an underground detention or retention system is easiest when there is no flow entering the system. For this reason, it is a good idea to schedule the cleanout during dry weather.

Accumulated sediment and trash can typically be evacuated through the manhole over the outlet orifice. If maintenance is not performed as recommended, sediment and trash may accumulate in front of the outlet orifice. Manhole covers should be securely seated following cleaning activities.

Inspection & Maintenance Log:

″ Dian	neter Syste	m	Location: An	ywhere, US	5A
Date	Depth of Sediment	Accumulated Trash	Maintenance Performed	Maintenance Personnel	Comments
12/01/99	2"	None	Removed Sediment	B. Johnson	Installed
03/01/00	1″	Some	Removed Sediment and Trash	B. Johnson	Swept parking lot
06/01/00	Ο″	None	None		
09/01/00	O″	Heavy	Removed Trash	S. Riley	
12/01/00	1″	None	Removed Sediment	S. Riley	
4/01/01	O″	None	None	S. Riley	
04/15/01	2″	Some	Removed Sediment and Trash	ACE Environmental Services	
		SAN	MPLE		

CONTROL OF INVASIVE PLANTS

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Background:

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

UNIVERSITY of NEW HAMPSHIRE Methods for Disposing COOPERATIVE EXTENSION Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

Tatarian honeysuckleLonicera tataricaUSDA-NRCS PLANTS Database / Britton, N.L., andA. Brown. 1913. An illustrated flora of the northernUnited States, Canada and the British Possessions.Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit <u>www.nhinvasives.org</u> or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic

Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676.

and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for years in areas where removal and disposal took place.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus)	Fruit and Seeds	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn.
Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)		 After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn.
	V	 After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Non-Woody Plants	Method of Reproducing	Methods of Disposal
<pre>garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) • Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) • May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) • Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)</pre>	Fruits and Seeds	 Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
common reed (<i>Phragmites australis</i>) Japanese knotweed (<i>Polygonum cuspidatum</i>) Bohemian knotweed (<i>Polygonum x bohemicum</i>)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

January 2010

UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game ,and U.S. Dept. of Agriculture cooperating.

APPENDIX 6.2

NHDES AOT WORKSHEETS

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided</u>. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

0.55 ac	A = Area draining to the practice
0.49 ac	A_{I} = Impervious area draining to the practice
0.88 dec	mal $I =$ percent impervious area draining to the practice, in decimal form
0.84 unit	less $Rv = Runoff \text{ coefficient} = 0.05 + (0.9 \text{ x I})$
0.46 ac-i	$\mathbf{W}\mathbf{W}\mathbf{V}=1^{"}\mathbf{x}\mathbf{R}\mathbf{v}\mathbf{x}\mathbf{A}$
1,687 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.84	inches	Q = water quality depth. $Q = WQV/A$
99	unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.2	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.030	inches	Ia = initial abstraction. Ia = $0.2S$
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.508	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Designer's Notes: C

CDS1

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided</u>. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

-	
0.72 ac	A = Area draining to the practice
0.59 ac	A_{I} = Impervious area draining to the practice
0.82 decimal	I = percent impervious area draining to the practice, in decimal form
0.78 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.57 ac-in	WQV=1" x Rv x A
2,055 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.78	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.2	inches	S = potential maximum retention. S = (1000/CN) - 10
0.042	inches	Ia = initial abstraction. Ia = $0.2S$
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.619	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Designer's Notes: C

CDS2

NHDES Alteration of Terrain Last Revised: August 2013

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided</u>. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

0.36 ac	A = Area draining to the practice
0.31 ac	A_{I} = Impervious area draining to the practice
0.86 decimal	I = percent impervious area draining to the practice, in decimal form
0.82 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.30 ac-in	WQV= 1" x Rv x A
1,076 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.82	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.2	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.033	inches	Ia = initial abstraction. Ia = $0.2S$
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.324	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Designer's Notes: C

CDS3

NHDES Alteration of Terrain Last Revised: August 2013

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided</u>. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

0.92 ac	A = Area draining to the practice
0.80 ac	A_{I} = Impervious area draining to the practice
0.86 decimal	I = percent impervious area draining to the practice, in decimal form
0.83 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.76 ac-in	WQV= 1" x Rv x A
2,765 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.83	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.2	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.033	inches	Ia = initial abstraction. Ia = $0.2S$
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.833	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Designer's Notes:

WQ1

This worksheet may be useful when designing a BMP <u>that does not fit into one of the specific worksheets</u> <u>already provided</u>. For example, if proposing a new technology, which is not a stormwater wetland, infiltration practice, etc., then this worksheet may be useful.

Water Quality Volume (WQV)

0.72 ac	A = Area draining to the practice
0.59 ac	A_{I} = Impervious area draining to the practice
0.82 decimal	I = percent impervious area draining to the practice, in decimal form
0.78 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.57 ac-in	WQV=1" x Rv x A
2,055 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.78	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = 1000/(10+5P+10Q-10*[Q2 + 1.25*Q*P]0.5)
0.2	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.042	inches	Ia = initial abstraction. Ia = 0.2S
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.619	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Designer's Notes: V

WQ2

NHDES Alteration of Terrain Last Revised: August 2013
Groundwater Recharge Volume (GRV) Calculation

2.93	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
i i	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
i i	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.40 in	iches	Rd = weighted groundwater recharge depth	
1.1712 ac	c-in	GRV = AI * Rd	
4,251 cf	ĺ	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

See the stage storage table under the water quality calculations.

Impervious area includes the compacted gravel area. HydroCAD does not show this surface cover as impervious cover.

NHDES Alteration of Terrain Last Revised: August 2013

Technical Release 55 Urban Hydrology for Small Watersheds

Exhibit 4-III Unit peal discharge (q_u) for NRCS (SCS) type III rainfall distribution

Time of concentration (T_c) , (hours)

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.06)

Type/Node	e Name:	Bio-Retention	
En	ter the type of	of filtration practice (e.g., bioretention system) and the node name in the drainage a	inalysis, if applicable
Yes	_	Have you reviewed the restrictions on unlined systems outlined in Env-Wo	q 1508.06(b)?
0.90	ac	A = Area draining to the practice1	
0.64	ac	A_{I} = Impervious area draining to the practice	
0.71	decimal	I = percent impervious area draining to the practice, in decimal form	
0.69	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.62	ac-in	WQV= 1" x Rv x A	
2,256	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
564	cf	25% x WQV (check calc for sediment forebay volume)	
1,692	cf	75% x WQV (check calc for surface sand filter volume)	
Filter	Media	Method of Pretreatment? (not required for clean or roof runoff)	
N/A	cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\%$ WQV
4,346	sf	A_{SA} = surface area of the practice	
6.50	iph	$I_{DESIGN} = design infiltration rate2$	
No	Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
1.0	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
116.50	feet	E_{FC} = elevation of the bottom of the filter course material	
N/A	feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
115.50	feet	E_{RTM} = elevation of the bottom of the practice (i.e., bottom of the stone	e reservoir).
110.00	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
100.00	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
#VALUE!	feet	$D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course ³	← ≥ 1'
16.50	feet	$D_{FC \text{ to ROCK}} = \text{depth to bedrock from the bottom of the filter course}^3$	← ≥ 1'
6.50	feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}^3$	← ≥ 1'
5.50	feet	$D_{BTM \text{ to SHWT}} = \text{depth to SHWT from the bottom of the practice}^3$	← ≥ 2'
118.94	ft	Peak elevation of the 10-year storm event (infiltration can be used in a	nalysis)
119.50	ft	Elevation of the top of the practice	
YES		10 peak elevation \leq Elevation of the top of the practice	← yes
If a surfac	e sand filte	er is proposed:	
YES	ac	Drainage Area check.	← < 10 ac
N/A	cf	V = volume of storage, (attach a stage-storage table)	$\leftarrow \geq 75\%$ WQV
N/A	inches	D_{FC} = filter course thickness	← 18"
Sheet		Note what sheet in the plan set contains the filter course specification	
N/A	Yes/No	Access grate provided?	← yes
N. If on under	/A	The filter shall not be covered in grass. What is covering the filter?	
	rground sa	Drainage Area check	4 < 10 pc
	of	$V = volume of store of \frac{4,5}{4} (attach a store store store table)$	\sim 10 ac
IN/A N/A	inches	v = volume of storage (attach a stage-storage table)	
Sheet	menes	P_{FC} – inter course unexicos	
N/A	Yes/No	Access grate provided?	← yes

If a bioretention area is proposed:

YES ac	Drainage Area no larger than 5 ac?	← yes
2,526 cf	V = volume of storage ^{4, 5} (attach a stage-storage table)	$\leftarrow \geq WQV$
18.0 inches	D_{FC} = filter course thickness	← 18''
Sheet	Note what sheet in the plan set contains the filter course specification	
2.0 :1	Pond side slopes	← <u>></u> 2:1
Sheet	Note what sheet in the plan set contains the planting plans and surface	e cover
If porous pavement	is proposed:	
If porous pavement N/A	is proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
If porous pavement N/A N/A acres	is proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement	
If porous pavement N/A N/A acres - :1	 is proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A_{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area 	← 5:1
If porous pavement N/A N/A acres - :1 N/A inches	 is proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A_{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area D_{FC} = filter course thickness 	 ← 5:1 ← 12"

1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre

2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.

3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.

4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.

5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Designer's Notes:

NHDES Alteration of Terrain Last Revised: August 2013

Stage-Area-Storage for Pond 1P: Bio-Retention

Elevation	Wetted	Storage	Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sa-ft)	(cubic-feet)	(feet)	(sa-ft)	(cubic-feet)	(feet)	(sa-ft)	(cubic-feet)
115 50	1 050	0	116.20	1 130	221	116 90	1 211	441
115 51	1,000	3	116.20	1,100	224	116.00	1 212	141
115.51	1,051	5	116.21	1,132	224	116.02	1,212	444
115.52	1,052	0	110.22	1,100	227	110.92	1,213	447
115.53	1,053	9	110.23	1,134	230	110.93	1,214	450
115.54	1,055	13	116.24	1,135	233	116.94	1,215	454
115.55	1,056	16	116.25	1,136	236	116.95	1,217	457
115.56	1,057	19	116.26	1,137	239	116.96	1,218	460
115.57	1,058	22	116.27	1,138	243	116.97	1,219	463
115.58	1.059	25	116.28	1.140	246	116.98	1.220	466
115.59	1,060	28	116.29	1,141	249	116.99	1,221	469
115 60	1,061	31	116 30	1 142	252	117.00	1 222	473
115.61	1,001	35	116.31	1 1/3	255	117.00	1 223	476
115.01	1,003	20	110.01	1,143	255	117.01	1,225	470
115.02	1,004	30	110.52	1,144	200	117.02	1,220	479
115.63	1,065	41	116.33	1,145	261	117.03	1,220	482
115.64	1,066	44	116.34	1,146	265	117.04	1,227	485
115.65	1,067	47	116.35	1,148	268	117.05	1,228	488
115.66	1,068	50	116.36	1,149	271	117.06	1,229	491
115.67	1,070	54	116.37	1,150	274	117.07	1,230	495
115.68	1,071	57	116.38	1,151	277	117.08	1,231	498
115.69	1.072	60	116.39	1.152	280	117.09	1.233	501
115 70	1 073	63	116 40	1 153	284	117 10	1 234	504
115 71	1,070	66 66	116.10	1 155	287	117.10	1 235	507
115.71	1,074	60	116.40	1,155	207	117.11	1,200	510
110.72	1,075	09	110.42	1,100	290	117.12	1,230	510
115.73	1,076	72	116.43	1,157	293	117.13	1,237	513
115.74	1,078	76	116.44	1,158	296	117.14	1,238	517
115.75	1,079	79	116.45	1,159	299	117.15	1,240	520
115.76	1,080	82	116.46	1,160	302	117.16	1,241	523
115.77	1,081	85	116.47	1,161	306	117.17	1,242	526
115.78	1,082	88	116.48	1,163	309	117.18	1,243	529
115.79	1,083	91	116.49	1,164	312	117.19	1,244	532
115.80	1.084	94	116.50	1,165	315	117.20	1,245	536
115.81	1,086	98	116.51	1 166	318	117 21	1 246	539
115.82	1,000	101	116.52	1 167	321	117.21	1 248	542
115.02	1,007	101	116.52	1,169	324	117.22	1,240	545
115.05	1,000	104	110.55	1,100	324	117.23	1,249	545
115.64	1,069	107	110.54	1,109	320	117.24	1,250	546
115.85	1,090	110	116.55	1,171	331	117.25	1,251	551
115.86	1,091	113	116.56	1,172	334	117.26	1,252	554
115.87	1,093	117	116.57	1,173	337	117.27	1,253	558
115.88	1,094	120	116.58	1,174	340	117.28	1,254	561
115.89	1,095	123	116.59	1,175	343	117.29	1,256	564
115.90	1,096	126	116.60	1,176	346	117.30	1,257	567
115.91	1,097	129	116.61	1,178	350	117.31	1,258	570
115.92	1.098	132	116.62	1,179	353	117.32	1,259	573
115.93	1,099	135	116.63	1,180	356	117.33	1,260	576
115 94	1 101	139	116 64	1 181	359	117 34	1 261	580
115.05	1 102	142	116.65	1 182	362	117.35	1 263	583
115.06	1,102	142	116.66	1,102	365	117.35	1,200	586
115.90	1,103	140	110.00	1,103	303	117.30	1,204	500
115.97	1,104	140	110.07	1,104	309	117.37	1,200	209
115.98	1,105	151	110.08	1,180	372	117.38	1,266	592
115.99	1,106	154	116.69	1,187	3/5	117.39	1,267	595
116.00	1,107	158	116.70	1,188	378	117.40	1,268	599
116.01	1,109	161	116.71	1,189	381	117.41	1,269	602
116.02	1,110	164	116.72	1,190	384	117.42	1,271	605
116.03	1,111	167	116.73	1,191	387	117.43	1,272	608
116.04	1,112	170	116.74	1,192	391	117.44	1,273	611
116.05	1,113	173	116.75	1,194	394	117.45	1.274	614
116.06	1 1 1 4	176	116 76	1 195	397	117 46	1 275	617
116.07	1 1 1 5	180	116.77	1 196	400	117.10	1 276	621
116.09	1,113	192	116.79	1,100	402	117.47	1,270	624
110.00	1,117	100	110.70	1,197	403	117.40	1,277	624
110.09	1,110	100	110.79	1,190	400	117.49	1,279	027
110.10	1,119	189	110.80	1,199	409	117.50	1,280	630
116.11	1,120	192	116.81	1,200	413	117.51	1,281	633
116.12	1,121	195	116.82	1,202	416	117.52	1,282	636
116.13	1,122	198	116.83	1,203	419	117.53	1,283	639
116.14	1,124	202	116.84	1,204	422	117.54	1,284	643
116.15	1,125	205	116.85	1,205	425	117.55	1,285	646
116.16	1,126	208	116.86	1,206	428	117.56	1,287	649
116.17	1,127	211	116.87	1,207	432	117.57	1.288	652
116.18	1.128	214	116.88	1.209	435	117.58	1.289	655
116.19	1,129	217	116.89	1.210	438	117.59	1.290	658
	.,			.,			.,	

Stage-Area-Storage for Pond 1P: Bio-Retention (continued)

Elevation	Wetted	Storage	Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
117.60	1,291	661	118.30	2,922	1.180	119.00	4,596	2,838
117 61	1 292	665	118 31	2 942	1 196	119.01	4 616	2 871
117.62	1 204	668	118 32	2,042	1 212	110.01	4,610	2,071
117.02	1,204	671	110.02	2,302	1,212	110.02	4,037	2,303
117.03	1,290	071	110.00	2,902	1,220	119.03	4,007	2,930
117.64	1,296	674	118.34	3,002	1,245	119.04	4,678	2,970
117.65	1,297	677	118.35	3,022	1,261	119.05	4,699	3,003
117.66	1,298	680	118.36	3,042	1,278	119.06	4,719	3,037
117.67	1,299	684	118.37	3,063	1,296	119.07	4,740	3,071
117.68	1,300	687	118.38	3,083	1,313	119.08	4,761	3,105
117.69	1,302	690	118.39	3,104	1,330	119.09	4,782	3,139
117.70	1,303	693	118.40	3.125	1.348	119.10	4.803	3.173
117.71	1,304	696	118.41	3,146	1,366	119.11	4,824	3,208
117 72	1 305	699	118 42	3 167	1 384	119 12	4 845	3 243
117 73	1,000	702	118.43	3 188	1 403	110.12	4 866	3 278
117.70	1,000	702	119.40	3,100	1,400	110.10	4,000	2 212
117.74	1,307	700	110.44	3,209	1,421	119.14	4,007	3,313
117.75	1,300	709	116.45	3,231	1,440	119.15	4,909	3,349
117.76	1,310	712	118.46	3,252	1,459	119.16	4,930	3,385
117.77	1,311	/15	118.47	3,274	1,478	119.17	4,952	3,421
117.78	1,312	718	118.48	3,296	1,498	119.18	4,973	3,457
117.79	1,313	721	118.49	3,317	1,517	119.19	4,995	3,493
117.80	1,314	724	118.50	3,339	1,537	119.20	5,016	3,530
117.81	1,315	728	118.51	3,362	1,557	119.21	5,038	3,567
117.82	1,316	731	118.52	3.384	1.578	119.22	5.060	3.604
117.83	1 318	734	118 53	3 406	1 598	119.23	5 081	3 641
117.00	1,010	737	118.50	3 /20	1,000	110.20	5 103	3 678
117.04	1,313	737	110.54	2 151	1,013	110.24	5,105	2,070
117.00	1,320	740	110.55	2,431	1,040	119.20	5,125	3,710
117.00	1,321	743	110.00	3,474	1,001	119.20	5,147	3,754
117.87	1,322	747	118.57	3,497	1,683	119.27	5,169	3,792
117.88	1,323	750	118.58	3,520	1,704	119.28	5,191	3,831
117.89	1,325	753	118.59	3,543	1,726	119.29	5,214	3,869
117.90	1,326	756	118.60	3,566	1,749	119.30	5,236	3,908
117.91	1,327	759	118.61	3,590	1,771	119.31	5,258	3,947
117.92	1,328	762	118.62	3,613	1,794	119.32	5,281	3,986
117.93	1,329	765	118.63	3,637	1,816	119.33	5,303	4,026
117.94	1,330	769	118.64	3,661	1,839	119.34	5,326	4,065
117.95	1.331	772	118.65	3.684	1.863	119.35	5.348	4,105
117 96	1,333	775	118.66	3 708	1,886	119.36	5,371	4 145
117 97	1 334	778	118.67	3 733	1 910	119 37	5 393	4 186
117.09	1,004	791	119.69	3,753	1,010	110.37	5,000	4 226
117.90	1,000	701	110.00	3,737	1,934	119.30	5,410	4,220
117.99	1,000	704	110.09	3,701	1,900	119.39	5,459	4,207
118.00	2,387	788	118.70	3,806	1,983	119.40	5,462	4,308
118.01	2,403	798	118.71	3,830	2,008	119.41	5,485	4,349
118.02	2,419	809	118.72	3,855	2,033	119.42	5,508	4,391
118.03	2,436	820	118.73	3,880	2,058	119.43	5,531	4,433
118.04	2,452	831	118.74	3,905	2,084	119.44	5,554	4,474
118.05	2,469	842	118.75	3,930	2,109	119.45	5,577	4,517
118.06	2,485	853	118.76	3,955	2,135	119.46	5,601	4,559
118.07	2.502	865	118.77	3.980	2,162	119.47	5.624	4,602
118.08	2,519	877	118,78	4,006	2,188	119.48	5.647	4,645
118 09	2,536	889	118 79	4 031	2 215	119 49	5 671	4 688
118 10	2 553 Ct	orado area	bolow	4 057	2 242	110.10	5 694	4 731
110.10	2,000	Ulaye alec		- 4.092	2,242	110.50	5 9 9 9	4,75
110.11	2,571	Itlet invert		4,003	2,209	110.51	5,000	4,775
110.12	2,000	000	440.00	4,109	2,297	119.52	0,007	4,022
118.13	2,606	938	118.83	4,135	2,324	119.53	6,289	4,870
118.14	2,623	951	118.84	4,161	2,353	119.54	6,496	4,921
118.15	2,641	964	118.85	4,187	2,381	119.55	6,708	4,973
118.16	2,659	977	118.86	4,213	2,409	119.56	6,923	5,028
118.17	2,677	990	118.87	4,240	2,438	119.57	7,142	5,085
118.18	2,695	1,004	118.88	4,267	2,467	119.58	7,366	5,144
118.19	2,713	1,017	118.89	4,293	2,497	119.59	7,594	5,205
118.20	2,732	1,031	118.90	4.320	2.526	119.60	7.827	5.269
118.21	2,750	1.045	118 91	4 347	2,556	119.61	8 063	5,200
118 22	2 769	1 050	118 92	4 374	2 587	119.62	8 304	5 403
118.22	2,700	1 07/	118 02	7,074 1 100	2,007	110.62	0,004 Q 5/0	5,400
110.20	2,101	1,074	110.93	4,402	2,017	110.00	0,049	5,474
110.24	2,000	1,000	110.94	4,429	2,040	119.04	0,199	5,547
118.25	2,825	1,103	118.95	4,457	2,679	119.65	9,052	5,623
118.26	2,844	1,118	118.96	4,484	2,710	119.66	9,310	5,701
118.27	2,864	1,133	118.97	4,512	2,742	119.67	9,572	5,782
118.28	2,883	1,149	118.98	4,540	2,773	119.68	9,838	5,866
118.29	2,902	1,164	118.99	4,568	2,805	119.69	10,109	5,952
			l			1		

Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)
119.70	10,384	6,041
119.71	10,663	6,133
119.72	10,946	6,227
119.73	11,233	6,325
119.74	11,525	6,425
119.75	11,821	6,528
119.76	12,121	6,634
119.77	12,426	6,744
119.78	12,734	6,856
119.79	13,047	6,971
119.80	13,365	7,090
119.81	13,686	7,212
119.82	14,012	7,337
119.83	14,342	7,465
119.84	14,676	7,596
119.85	15,014	7,731
119.86	15,357	7,870
119.87	15,704	8,012
119.88	16,055	8,157
119.89	16,410	8,306
119.90	16,770	8,458
119.91	17,134	8,614
119.92	17,502	8,774
119.93	17,874	8,937
119.94	18,251	9,104
119.95	18,632	9,275
119.96	19,017	9,450
119.97	19,406	9,629
119.98	19,800	9,811
119.99	20,197	9,998
120.00	20.599	10.188

Stage-Area-Storage for Pond 1P: Bio-Retention (continued)

INFILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.05)

Type/Node Name:	Infil #1	
Ente	er the type of infiltration practice (e.g., trench) and the node name in the drainage	analysis, if applicable
Yes	Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allow	ved?
2.53 ac	A = Area draining to the practice	
2.27 ac	A_{I} = Impervious area draining to the practice	
0.90 decimal	I = percent impervious area draining to the practice, in decimal form	
0.86 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
2.17 ac-in	WQV= 1" x Rv x A	
7,875 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,969 cf	25% x WQV (check calc for sediment forebay volume)	
CDS/Filtera	Method of pretreatment? (not required for clean or roof runoff)	
N/A cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
8,470 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
6,699 sf	A_{SA} = surface area of the bottom of the pond	
6.50 iph	$I_{DESIGN} = design infiltration rate2$	
2.3 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
113.00 feet	E_{BTM} = elevation of the bottom of the practice	
110.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
100.00 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
3.00 feet	D_{SHWT} = separation from SHWT ³	$\leftarrow \geq *^3$
13.0 feet	D_{ROCK} = separation from bedrock ³	← ≥*'
NO ft	$D_{\rm T}$ = depth of trench, if trench proposed	← 4 - 10 ft
Yes Yes/No	If a trench or underground system is proposed, observation well provi	ded
N/A	If a trench is proposed, material in trench	
Stone	If a basin is proposed, basin floor material	
NO Yes/No	If a basin is proposed, the perimeter should be curvilinear.	-
N/A :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
115.38 ft	Peak elevation of the 10-year storm event (infiltration can be used in a	analysis)
116.69 ft	Peak elevation of the 50-year storm event (infiltration can be used in a	analysis)
118.00 ft	Elevation of the top of the practice (if a basin, this is the elevation of	the berm)
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	▼ yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

Designer's Notes:

NHDES Alteration of Terrain Last Revised: August 2013

Stage-Area-Storage for Pond INFIL1: INFIL. #1

Elevation	Wetted	Storage	Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
113.00	6,699	0	113.70	6,929	2,833	114.40	7,158	6,330
113.01	6,702	27	113.71	6,932	2,880	114.41	7,161	6,383
113.02	6,706	56	113.72	6,935	2,927	114.42	7,165	6,435
113.03	6,709	86	113.73	6,938	2,974	114.43	7,168	6,488
113.04	6,712	116	113.74	6,942	3,021	114.44	7,171	6,541
113.05	6,715	148	113.75	6,945	3,068	114.45	7,175	6,594
113.06	6,719	186	113.76	6,948	3,115	114.46	7,178	6,646
113.07	6,722	219	113.77	6,952	3,163	114.47	7,181	0,099
113.00	0,720	203	113.70	0,900	3,210	114.40	7,104	0,752
113.09	0,729	207	113.79	0,900	3,200	114.49	7,100	0,000
113.10	6,732	321	113.00	6,901	3,300	114.50	7,191	0,000
113.11	6 738	302	113.01	6,903	3,000	114.51	7,194	6,911
113.12	6 742	428	113.02	6 971	3 449	114.52	7,100	7 018
113.14	6 745	464	113.84	6,975	3 498	114.50	7 204	7,010
113.15	6,748	500	113.85	6,978	3,546	114.55	7,207	7,124
113.16	6,751	537	113.86	6,981	3,594	114.56	7,211	7,177
113.17	6,755	574	113.87	6,984	3.643	114.57	7.214	7.231
113.18	6.758	611	113.88	6,988	3.691	114.58	7.217	7.284
113.19	6,761	649	113.89	6,991	3,740	114.59	7,221	7,338
113.20	6,765	687	113.90	6,994	3,789	114.60	7,224	7,391
113.21	6,768	725	113.91	6,997	3,838	114.61	7,227	7,445
113.22	6,771	763	113.92	7,001	3,887	114.62	7,230	7,498
113.23	6,774	802	113.93	7,004	3,936	114.63	7,234	7,552
113.24	6,778	841	113.94	7,007	3,985	114.64	7,237	7,606
113.25	6,781	880	113.95	7,011	4,034	114.65	7,240	7,659
113.26	6,784	920	113.96	7,014	4,083	114.66	7,243	7,713
113.27	6,788	959	113.97	7,017	4,133	114.67	7,247	7,767
113.28	6,791	999	113.98	7,020	4,182	114.68	7,250	7,821
113.29	6,794	1,039	113.99	7,024	4,232	114.69	7,253	7,875
113.30	6,797	1,079	114.00	7,027	4,281	114.70	7,257	7,928
113.31	6,801	1,120	114.01	7,030	4,331	114.71	7,260	7,982
113.32	6,804	1,161	114.02	7,034	4,381	114.72	7,263	8,036
113.33	6,807	1,202	114.03	7,037	4,431	114.73	7,266	8,090
113.34	6,811	1,243	114.04	7,040	4,481	114.74	7,270	8,145
113.35	6,814	1,284	114.05	7,043	4,531	114.75	7,273	8,199
113.30	0,017	1,320	114.00	7,047	4,001	114.70	7,270	0,200
113.37	6,824	1,307	114.07	7,050	4,032	114.77	7,200	8 361
113.30	6 827	1,403	114.00	7,053	4,002	114.70	7,205	8 4 1 5
113.00	6,830	1 493	114.05	7,007	4,782	114.80	7 289	8 470
113 41	6 833	1,536	114.10	7,000	4 833	114.80	7 293	8 524
113.42	6,837	1,579	114.12	7,066	4,884	114.82	7,296	8.578
113.43	6.840	1.621	114.13	7.070	4,935	114.83	7.299	8.633
113.44	6.843	1.664	114.14	7.073	4.986	114.84	7.303	8.687
113.45	6,847	1,707	114.15	7,076	5,036	114.85	7,306	8,742
113.46	6,850	1,751	114.16	7,079	5,087	114.86	7,309	8,796
113.47	6,853	1,794	114.17	7,083	5,13	orade volum	12	8,851
113.48	6,856	1,838	114.18	7,086	5,18	lorage volun	16	8,905
113.49	6,860	1,881	114.19	7,089	5,24 06	elow invert o	ut 19	8,960
113.50	6,863	1,925	114.20	7,093	5,29 <mark>2</mark>	114.90	22, <i>r</i>	9,014
113.51	6,866	1,969	114.21	7,096	5,343	114.91	7,325	9,069
113.52	6,870	2,014	114.22	7,099	5,395	114.92	7,329	9,124
113.53	6,873	2,058	114.23	7,102	5,446	114.93	7,332	9,178
113.54	6,876	2,102	114.24	7,106	5,497	114.94	7,335	9,233
113.55	6,879	2,147	114.25	7,109	5,549	114.95	7,339	9,288
113.30	0,000	2,192	114.20	7,112	5,001	114.90	7,342	9,342
113.37	0,000	2,237	114.27	7,110	5,052	114.97	7,343	9,397
113.50	6,009	2,202	114.20	7,119	5,704	114.90	7,340	9,452
113.60	6,896	2,327	114.20	7,122	5,808	115.00	7 355	9 562
113.60	6,899	2,012	114.30	7,120	5,860	115.00	7,358	9,617
113.62	6,902	2,464	114.32	7,132	5,912	115.02	7,362	9,672
113.63	6.906	2,509	114.33	7.135	5.964	115.03	7.365	9.726
113.64	6,909	2.555	114.34	7,139	6.016	115.04	7,368	9.781
113.65	6,912	2,601	114.35	7,142	6,068	115.05	7,371	9.836
113.66	6,915	2,647	114.36	7,145	6,121	115.06	7,375	9,891
113.67	6,919	2,694	114.37	7,148	6,173	115.07	7,378	9,946
113.68	6,922	2,740	114.38	7,152	6,225	115.08	7,381	10,001
113.69	6,925	2,786	114.39	7,155	6,278	115.09	7,385	10,056

Stage-Area-Storage for Pond INFIL1: INFIL. #1 (continued)

Elevation	Wetted	Storage	Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
115.10	7,388	10,111	115.80	7,617	13,986	116.50	7,847	17,791
115.11	7,391	10,167	115.81	7,621	14,041	116.51	7,850	17,844
115.12	7,394	10,222	115.82	7,624	14,096	116.52	7,854	17,897
115.13	7,398	10,277	115.83	7,627	14,151	116.53	7,857	17,950
115.14	7,401	10.332	115.84	7.631	14,207	116.54	7.860	18.002
115.15	7,404	10.387	115.85	7.634	14,262	116.55	7,863	18.055
115.16	7,407	10,442	115.86	7.637	14,317	116.56	7.867	18,108
115.17	7,411	10,497	115.87	7,640	14,372	116.57	7,870	18,161
115 18	7 414	10,553	115.88	7 644	14 427	116.58	7 873	18 213
115 19	7 417	10,608	115.89	7 647	14 482	116 59	7 877	18 266
115 20	7 421	10,000	115.00	7,650	14 537	116.60	7 880	18 319
115 21	7,421	10,000	115.00	7,000	14,507	116.61	7,883	18 371
115.21	7 / 27	10,710	115.07	7,000	14,552	116.62	7,886	18 / 2/
115.22	7 420	10,774	115.02	7,007	14,047	116.62	7,000	19,424
115.25	7,430	10,029	115.93	7,000	14,702	116.64	7,090	19,470
115.24	7,434	10,004	115.94	7,003	14,757	116.65	7,095	10,520
115.25	7,437	10,939	115.95	7,007	14,012	110.00	7,090	10,001
115.20	7,440	10,995	115.90	7,070	14,007	110.00	7,099	10,033
115.27	7,444	11,050	115.97	7,673	14,922	110.07	7,903	18,685
115.28	7,447	11,105	115.98	7,676	14,977	116.68	7,906	18,737
115.29	7,450	11,161	115.99	7,680	15,032	116.69	7,909	18,789
115.30	7,453	11,216	116.00	7,683	15,087	116.70	7,913	18,841
115.31	7,457	11,271	116.01	7,686	15,142	116.71	7,916	18,893
115.32	7,460	11,327	116.02	7,690	15,197	116.72	7,919	18,945
115.33	7,463	11,382	116.03	7,693	15,252	116.73	7,922	18,996
115.34	7,467	11,438	116.04	7,696	15,306	116.74	7,926	19,048
115.35	7,470	11,493	116.05	7,699	15,361	116.75	7,929	19,100
115.36	7,473	11,548	116.06	7,703	15,416	116.76	7,932	19,151
115.37	7,476	11,604	116.07	7,706	15,471	116.77	7,936	19,203
115.38	7,480	11,659	116.08	7,709	15,525	116.78	7,939	19,254
115.39	7,483	11,715	116.09	7,713	15,580	116.79	7,942	19,306
115.40	7,486	11,770	116.10	7,716	15,635	116.80	7,945	19,357
115.41	7,489	11,825	116.11	7,719	15,689	116.81	7,949	19,408
115.42	7,493	11,881	116.12	7,722	15,744	116.82	7,952	19,459
115.43	7,496	11,936	116.13	7,726	15,798	116.83	7,955	19,510
115.44	7,499	11,992	116.14	7,729	15,853	116.84	7,959	19,561
115.45	7,503	12.047	116.15	7,732	15,907	116.85	7,962	19,612
115.46	7,506	12,103	116.16	7,735	15,962	116.86	7,965	19,663
115.47	7,509	12,158	116.17	7,739	16,016	116.87	7,968	19,714
115 48	7 512	12 214	116.18	7 742	16,070	116.88	7 972	19 765
115 49	7,516	12 269	116 19	7 745	16 125	116.89	7 975	19,815
115.50	7,519	12,324	116.20	7,749	16,179	116.90	7,978	19,866
115.51	7 522	12,380	116.21	7 752	16,233	116.91	7 981	19 917
115 52	7,526	12,000	116.22	7 755	16,288	116.92	7 985	19 967
115 53	7,520	12,400	116.22	7,758	16 342	116.02	7,000	20.017
115 54	7,520	12,401	116.24	7,762	16 396	116.00	7,000	20,017
115.55	7,532	12,040	116.25	7,765	16,550	116.05	7,001	20,000
115.56	7,530	12,002	116.26	7,768	16 504	116.06	7,008	20,110
115.50	7,555	12,007	116.20	7,700	16,504	116.07	8,001	20,100
115.57	7,542	12,713	116.27	7 775	10,550	116.09	8,001	20,210
115.50	7,545	12,700	116.20	7,775	10,012	116.00	0,004	20,200
115.59	7,349	12,023	110.29	7,770	10,000	110.99	0,000	20,310
115.00	7,002	12,079	110.30	7,701	10,720	117.00	0,011	20,307
115.01	7,000	12,934	110.31	7,700	10,774	117.01	0,014	20,417
115.62	7,558	12,990	116.32	7,788	16,828	117.02	8,018	20,467
115.63	7,562	13,045	116.33	7,791	16,882	117.03	8,021	20,516
115.64	7,565	13,100	116.34	7,795	16,936	117.04	8,024	20,566
115.65	7,568	13,156	116.35	7,798	16,990	117.05	8,027	20,615
115.66	7,571	13,211	116.36	7,801	17,043	117.06	8,031	20,664
115.67	7,575	13,267	116.37	7,804	17,097	117.07	8,034	20,713
115.68	7,578	13,322	116.38	7,808	17,151	117.08	8,037	20,762
115.69	7,581	13,377	116.39	7,811	17,204	117.09	8,041	20,811
115.70	7,585	13,433	116.40	7,814	17,258	117.10	8,044	20,860
115.71	7,588	13,488	116.41	7,817	17,311	117.11	8,047	20,909
115.72	7,591	13,543	116.42	7,821	17,365	117.12	8,050	20,957
115.73	7,594	13,599	116.43	7,824	17,418	117.13	8,054	21,006
115.74	7,598	13,654	116.44	7,827	17,471	117.14	8,057	21,055
115.75	7,601	13,709	116.45	7,831	17,525	117.15	8,060	21,103
115.76	7,604	13,765	116.46	7,834	17,578	117.16	8,063	21,151
115.77	7,608	13,820	116.47	7,837	17,631	117.17	8,067	21,199
115.78	7,611	13,875	116.48	7,840	17,684	117.18	8,070	21,247
115.79	7,614	13,930	116.49	7,844	17,738	117.19	8,073	21,295

Stage-Area-Storage for Pond INFIL1: INFIL. #1 (continued)

Elevation	Wetted	Storage	Elevation	Wetted	Storage
	<u>(sq-π)</u>	(CUDIC-TEET)		<u>(sq-π)</u>	
117.20	8,077	21,343	117.90	8,306	24,327
117.21	8,080	21,391	117.91	8,309	24,362
117.22	8,083	21,439	117.92	8,313	24,396
117.23	8,086	21,486	117.93	8,316	24,430
117.24	8,090	21,534	117.94	8,319	24,463
117.25	8,093	21,581	117.95	8,323	24,496
117.26	8,096	21,628	117.96	8,326	24,528
117.27	8,100	21,675	117.97	8,329	24,559
117.28	8,103	21,722	117.98	8,332	24,588
117.29	8,106	21,769	117.99	8,336	24,617
117.30	8,109	21,816	118.00	8,339	24,649
117.31	8,113	21,862			
117.32	8,116	21,909			
117.33	8,119	21,955			
117.34	8,123	22,001			
117.35	8,126	22,048			
117.36	8,129	22,094			
117.37	8,132	22,139			
117.38	8,136	22,185			
117.39	8,139	22,231			
117.40	8,142	22,276			
117.41	8,145	22,322			
117.42	8,149	22,367			
117.43	8,152	22,412			
117.44	8,155	22,457			
117.45	8,159	22,502			
117.46	8,162	22,546			
117.47	8,165	22,591			
117.48	8,168	22,635			
117.49	8,172	22,679			
117.50	8,175	22,723			
117.51	8,178	22,767			
117.52	8,182	22,811			
117.53	8,185	22,855			
117.54	8,188	22,898			
117.55	8,191	22,941			
117.56	8,195	22,985			
117.57	8,198	23,028			
117.58	8,201	23,070			
117.59	8,205	23,113			

117.59 117.60

117.61

117.62

117.63

117.64

117.65

117.66

117.67

117.68

117.69

117.70

117.71

117.72 117.73

117.74

117.75

117.76

117.77

117.78

117.79

117.80

117.81

117.82

117.83

117.84

117.85

117.86

117.87

117.88

117.89

8,208

8,211

8,214 8,218

8,221

8,224

8,227

8,231

8,234

8,237

8,241

8,244

8,247

8,250

8,254

8,257

8,260

8,264

8,267

8,270

8,273

8,277

8,280

8,283

8,287

8,290

8,293

8,296

8,300

8,303

23,155 23,198

23,240

23,282 23,323

23,365 23,406

23,447

23,488

23,529

23,569 23,610

23,650

23,690

23,729

23,769 23,808

23,847 23,885

23,924

23,962

24,000

24,037 24,075

24,112

24,148

24,185

24,221 24,257

24,292

APPENDIX 6.3

WATER QUALITY UNIT SIZING (CONTECH)

- Date: September 30, 2019
- To: Allen & Major
- From: David Adams Sr. Design Engineer Contech Engineered Solutions
- RE: Residential Development 158 161 Temple Street, Nashua, NH Jellyfish Bypass Weir Design Summary

Site Design Data:

- WQS 1:
 - \circ WQ Flow = 0.83 cfs
 - Peak Flow: 5.69 cfs
 - Downstream Pipe: 8LF x 24" HDPE @ 0.875%
 - o Model: JFPD0806-5-1
- WQS 2:
 - \circ WQ Flow = 0.62 cfs
 - o Downstream Pipe: 18 LF x 15" HDPE @ 0.778%
 - Upstream Pipe: 11 LF x 15" HDPE @ 0.818%
 - o Model Offline JFMH6-3-1

Assumptions:

- Free Flow Conditions
- HDPE pipes have smooth interior
- Pipe entry/exit are square edge with headwall

Weir Elevation calculation:

WQS 1:

Downstream pipe headwater elevation during WQ Flow: 115.22 ft HGL impact of filter: 18" (1.5 ft) Jellyfish headwater elevation during WQ Flow: 116.72 ft JFPD Bypass Weir Elevation: 116.72 ft

Bypass Weir Crest Length: 2'-10" Calculated upstream HGL during peak flow: 117.44 ft

Downstream pipe calculation:

olve For:	eadwater Bevation				
Culvert			- Inverts		
	Discharge: 0.83	cfs	Invert Upstream:	114.74	ft
Maximum Allo	wable HW: 116.00	ft	Invert Downstream:	114.67	ft
Tailwate	r Elevation: 113.00	ft	Length:	8.00	ft
Section			Slope:	0.008750	ft/ft
Shape:	Circular	•	- Headwater Elevatio	ns	
Material:	Corrugated HDPE (Smooth In	•	Maximum Allowabl	e: 116.00	ft
Size:	24 inch	•	Computed Headwate	er: 115.22	ft
Number:	1		Inlet Contro	ol: 115.15	ft
Mannings:	0.012	•	Outlet Contro	ol: 115.22	ft
nlet		ar ar d	Exit Results		
Entrance:	Square edge w/headwall	•	Discharge: 0.83		cfs
Ke:	0.50		Velocity: 3.31		ft/s
			Depth: 0.27		ft

WQS 2:

Downstream pipe headwater elevation during WQ Flow: 114.64 ft HGL impact of filter: 18" (1.5 ft) Upstream pipe headwater elevation during WQ Flow: 116.15 Upstream Bypass Weir Elevation: 116.15 ft

BP Crest Length: per EOR Estimated upstream HGL during peak flow: per EOR

Downstream pipe calculation:

olve For:	eadwater Elevation]		100
Culvert			Inverts		
	Discharge: 0.62	cfs	Invert Upstream:	114.17	ft
Maximum Allo	wable HW: 116.00	ft	Invert Downstream:	114.03	ft
Tailwate	r Elevation: 113.00	ft	Length:	18.00	ft
Section			Slope:	0.007778	ft/ft
Shape:	Circular	-	Headwater Elevation	ons	
Material:	Corrugated HDPE (Smo	oth In 💌	Maximum Allowab	le: 116.00	ft
Size:	15 inch	-	Computed Headwat	er: 114.64	ft
Number:	1		Inlet Contr	ol: 114.58	ft
Mannings:	0.012	•	Outlet Contr	rol: 114.64	ft
nlet			Exit Results		
Entrance:	Square edge w/headwa	-	Discharge: 0.62		cfs
Ke:	0.50		Velocity: 3.22		ft/s
			Depth: 0.27		ft

Upstream pipe calculation:

olve For: Headwater Beva	tion	-			
Culvert			- Inverts		
Discharge: 0.6	2 cfs	5	Invert Upstream:	114.36	ft
Naximum Allowable HW: 11	7.00 ft		Invert Downstream:	114.27	ft
Tailwater Elevation: 110	6.14 ft		Length:	11.00	ft
Section		_	Slope:	0.008182	ft/ft
Shape: Circular	•	1	Headwater Elevation	ons	
Material: Corrugated HI	DPE (Smooth In 👻		Maximum Allowab	le: 117.00	ft
Size: 15 inch	-		Computed Headwat	er: 116.15	ft
Number: 1			Inlet Contr	ol: 116.14	ft
Mannings: 0.012	•	Í Í	Outlet Contr	ol: 116.15	ft
nlet			Exit Results		
Entrance: Square edge w	/headwall	•	Discharge: 0.62		cfs
Ke: 0.50			Velocity: 0.50		ft/s
1000 A			Depth: 1.87	3	ft

Joshua Stackhouse Stormwater Consultant 71 US Route One Suite F Scarborough, ME 04074

Off: 207-885-6112 Mob: 207-219-9110 Email: <u>jstackhouse@conteches.com</u>

Date: October 8, 2019

- To: Michael Malynowski, PE Allen & Major Associates
- RE: Residential Development 158-161 Temple Street, Nashua, NH Jellyfish Bypass Elevation Discrepancies

Dear Michael,

There has been some conflicting information regarding the bypass weir crest length and elevation from Contech on the above project, and I would like to explain why and confirm the correct information.

For system WQS 1 (JFPD0806-5-1), Contech communicated weir lengths of 2'-8" and 2'-10". This was an oversight on our part – some of the Peak Diversion models *do* use a 2'-8" weir length, but this model will be using the 2'-10" length, which was correctly noted on the final design summary from my colleague David Adams on 9/30/19. Along with the weir length, the elevation also changed a few times, and this was the result of internal discussion. When asked for information regarding how this is determined, multiple engineers with advanced knowledge of the product design had different opinions on the correct way to calculate this elevation, and as a result there were conflicting approaches. Each time we looked at the deliverables we were providing, we attempted to update to the current approach by the engineering team.

In the end, the final design approach is to determine the headwater elevation at the outlet pipe from the Jellyfish, and then add in the 18" of operational head required of the system. I have confirmed that this will be the way we design or future projects as well, with the caveat that if there is a tailwater issue, we will need to account for that as well. Ultimately we do intend to provide something similar to the final design summary going forward, and will work with NH DES to make sure the format is something they are comfortable with.

Sincerely,

2 D.Stul

Joshua Stackhouse

Project: Location: Prepared For:	Residential Development 158-161 Temple Street Nashua, NH Allen Major	C NTECH ENGINEERED SOLUTIONS		
<u>Purpose:</u>	To calculate the water quality flow rate (WQF) over a given site area. In this si derived from the first 1" of runoff from the contributing impervious surface.	tuation the WQF is		
<u>Reference:</u>	Eference: Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual			
<u>Procedure:</u>	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu following units: cfs/mi ² /watershed inches (csm/in). Compute Q Rate using the following equation:	so is preferred. Using I is expressed in the		

Q = (qu) (A) (WQV)

where:

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
CDS 1	0.49	0.0007656	6.0	0.100	1.00	774.00	0.59
CDS 2	0.59	0.0009219	6.0	0.100	1.00	774.00	0.71
CDS 3	0.31	0.0004844	6.0	0.100	1.00	774.00	0.37

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD RESIDENTIAL DEVELOPMENT 158-161 TEMPLE STREET** NASHUA, NH 0.49 ac Unit Site Designation CDS 1 Area Rainfall Station # Weighted C 0.9 104 6 min t_c CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 13.0% 0.02 13.0% 0.01 0.01 12.6 0.02 0.02 0.04 12.2% 25.2% 11.8 0.06 11.2% 36.4% 0.03 0.03 10.8 10.0% 0.08 46.4% 0.04 0.04 9.5 0.10 8.2% 54.6% 0.04 0.04 7.8 0.12 5.8% 60.4% 0.05 0.05 5.5 0.14 6.5% 66.9% 0.06 0.06 6.1 0.16 4.6% 71.5% 0.07 0.07 4.3 0.18 3.7% 75.2% 0.08 0.08 3.4 0.20 3.3% 78.5% 0.09 0.09 3.1 0.25 6.7% 85.2% 0.11 0.11 6.1 0.30 3.7% 3.4 88.9% 0.13 0.13 0.35 2.4% 91.3% 0.15 0.15 2.2 0.40 1.8% 93.1% 0.18 0.18 1.6 0.20 1.7 0.45 1.9% 95.0% 0.20 0.50 1.1% 96.1% 0.22 0.22 0.9 0.75 2.6% 98.7% 0.33 0.33 2.1 0.7 0.9% 99.6% 0.44 0.44 1.00 1.50 0.4% 100.0% 0.66 0.66 0.2 100.0% 2.00 0.0% 0.88 0.88 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 93.8 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 87.4% 1 - Based on 10 years of hourly precipitation data from NCDC 1683, Concord WSO Airport, Merrimack County, NH 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD RESIDENTIAL DEVELOPMENT 158-161 TEMPLE STREET** NASHUA, NH 0.59 ac Unit Site Designation **CDS 2** Area 0.9 Rainfall Station # Weighted C 104 6 min t_c CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 13.0% 0.02 13.0% 0.01 0.01 12.5 0.02 0.02 0.04 12.2% 25.2% 11.8 0.06 11.2% 36.4% 0.03 0.03 10.7 10.0% 0.08 46.4% 0.04 0.04 9.5 0.10 8.2% 54.6% 0.05 0.05 7.8 5.4 0.12 5.8% 60.4% 0.06 0.06 0.14 6.5% 66.9% 0.07 0.07 6.1 0.16 4.6% 71.5% 0.08 0.08 4.3 0.18 3.7% 75.2% 0.10 0.10 3.4 0.20 3.3% 78.5% 0.11 0.11 3.0 0.25 6.7% 85.2% 0.13 0.13 6.1 0.30 3.7% 3.3 88.9% 0.16 0.16 0.35 2.4% 91.3% 0.19 0.19 2.1 0.40 1.8% 93.1% 0.21 0.21 1.6 1.7 0.45 1.9% 95.0% 0.24 0.24 0.50 1.1% 96.1% 0.27 0.27 0.9 0.75 2.6% 98.7% 0.40 0.40 2.0 0.7 0.9% 99.6% 0.53 0.53 1.00 1.50 0.4% 100.0% 0.80 0.80 0.2 0.0% 100.0% 2.00 1.06 1.06 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 93.1 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 86.7% 1 - Based on 10 years of hourly precipitation data from NCDC 1683, Concord WSO Airport, Merrimack County, NH 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD RESIDENTIAL DEVELOPMENT 158-161 TEMPLE STREET** NASHUA, NH 0.31 ac Unit Site Designation **CDS 3** Area 0.9 Rainfall Station # Weighted C 104 6 min t_c CDS Model 1515-3 **CDS** Treatment Capacity 1.0 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity¹ Volume¹ **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 13.0% 0.02 13.0% 0.01 0.01 12.6 0.01 0.01 0.04 12.2% 25.2% 11.8 0.06 11.2% 36.4% 0.02 0.02 10.8 10.0% 0.08 46.4% 0.02 0.02 9.5 0.10 8.2% 54.6% 0.03 0.03 7.9 5.5 0.12 5.8% 60.4% 0.03 0.03 0.14 6.5% 66.9% 0.04 0.04 6.1 0.16 4.6% 71.5% 0.04 0.04 4.4 0.18 3.7% 75.2% 0.05 0.05 3.4 0.20 3.3% 78.5% 0.06 0.06 3.1 0.25 6.7% 85.2% 0.07 0.07 6.2 0.30 3.7% 0.08 3.4 88.9% 0.08 0.35 2.4% 91.3% 0.10 0.10 2.2 0.40 1.8% 93.1% 0.11 0.11 1.6 1.7 0.45 1.9% 95.0% 0.13 0.13 0.50 1.1% 96.1% 0.14 0.14 0.9 0.75 2.6% 98.7% 0.21 0.21 2.1 0.7 0.9% 99.6% 0.28 0.28 1.00 0.42 1.50 0.4% 100.0% 0.42 0.3 0.0% 100.0% 0.56 2.00 0.56 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 94.2 Removal Efficiency Adjustment² = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 87.7% 1 - Based on 10 years of hourly precipitation data from NCDC 1683, Concord WSO Airport, Merrimack County, NH 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

CDS2015-4-C DESIGN NOTES

Ň

4 4 4 4 4 4 4

ELEVATION A-A

N.T.S.

FOLLOWING U.S. P

-97979799

CONTECH www.contechES.com

CONFIGURATION DESCRIPTION GRATED INLET ONLY (NO INLET PIPE) GRATED INLET WITH INLET PIPE OR PIPES

CURB INLET ONLY (NO INLET PIPE)

CURB INLET WITH INLET PIPE OR PIPES

GENERAL NOTES

1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com

FRAME AND COVER

(DIAMETER VARIES)

N.T.S.

- CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- AASHTO M306 AND BE CAST WITH THE CONTECH LOGO ...
- NECESSARY DURING MAINTENANCE CLEANING.

- INSTALLATION NOTES
- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE. C.
- CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE D.
- CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
- Ε. SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

B

PVC HYDRAULIC

SOLIDS STORAGE SUMP -

SHEAR PLATE

CDS2015-4-C RATED TREATMENT CAPACITY IS 1.4 CFS, OR PER LOCAL REGULATIONS.

THE STANDARD CDS2015-4-C CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.

SITE SPECIFIC DATA REQUIREMENTS										
STRUCTURE ID										
WATER QUALITY	FLOW RAT	E (CFS OR L/s)		*					
PEAK FLOW RAT	E (CFS OR	L/s)	,		*					
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*					
SCREEN APERTL	JRE (2400 C	R 4	4700)		*					
	IE			П						
INLET PIPE 1	*	-	*	0	*					
INLET PIPE 2	*		*		*					
OUTLET PIPE	*		*		*					
RIM ELEVATION					*					
ANTI-FLOTATION	BALLAST		WIDTH		HEIGHT					
* *										
NOTES/SPECIAL REQUIREMENTS:										
* PER ENGINEER OF RECORD										

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED

3. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.

4. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 2', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET

5. IF REQUIRED, PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS

6. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.

CDS2015-4-C

ONLINE CDS

STANDARD DETAIL

CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS

CDS1515-3-C DESIGN NOTES

CDS1515-3-C RATED TREATMENT CAPACITY IS 1.0 CFS, OR PER LOCAL REGULATIONS.

THE STANDARD CDS1515-3-C CONFIGURATION IS SHOWN.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED
- SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com 3. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT. 4. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 2', AND GROUNDWATER ELEVATION AT, OR BELOW,
- THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- 5. IF REQUIRED, PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.
- 6. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE. C.
- CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE D.
- CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

SITE SPECIFIC DATA REQUIREMENTS

STRUCTURE ID								
WATER QUALITY FLOW RATE (CFS OR L/s) *								
PEAK FLOW RATE (CFS OR L/s) *								
RETURN PERIOD OF PEAK FLOW (YRS) *								
SCREEN APERTURE (2400 OR 4700) *								
PIPE DATA: I.E. MATERIAL DIAMETER								
INLET PIPE 1 * * *								
INLET PIPE 2 * * *								
OUTLET PIPE	*		*		*			
RIM ELEVATION					*			
	DALLACT			_				
ANTI-FLUTATION	BALLASI		WIDIN		HEIGHT			
			*		*			
NOTES/SPECIAL REQUIREMENTS:								
* PER ENGINEER OF RECORD								

CDS1515-3-C

ONLINE CDS

STANDARD DETAIL

Jellyfish Filter Design Summary

158-161 Temple Street: WQU 1

Nashua, NH

Information Provided:

- Total Contributing Drainage Area = 0.92 acres
- Impervious cover = 0.80 acres
- Design Storm = 1.00" Rainfall
- T_c = 6 minutes
- Unit Peak Discharge, qu = 700 cfs/mi²/in
- Presiding agency = Alteration of Terrain Bureau NHDES (AoT-NHDES)

Jellyfish Information and Cartridge Data:

The Jellyfish[®] Filter is an engineered Stormwater quality treatment technology featuring pre-treatment and membrane filtration in a compact stand-alone treatment system that removes a high level and wide variety of Stormwater pollutants. Exceptional pollutant removal is achieved at high treatment flow rates with minimal head loss and low maintenance costs. Each lightweight Jellyfish Filter cartridge contains an extraordinarily large amount of membrane surface area, resulting in superior flow capacity and pollutant removal capacity. The Jellyfish Filter is NJCAT verified in accordance to the TARP Tier II Protocol and New Jersey Tier II Stormwater Test Requirements – Amendments to Tarp Tier II Protocol, with a demonstrated 89% TSS removal efficiency.

- Jellyfish cartridge length = 54 inches (nominal)
- Jellyfish cartridge flowrate (Hi Flo) = 80 gpm
- Jellyfish cartridge flowrate (Drain Down) = 40 gpm
- Jellyfish cartridge headloss = Minimum 18" above outlet

Design Summary:

The Jellyfish for this site was design as a flow-based system, and was sized based on calculating the peak water quality flow rate associated with the design storm. The design storm rainfall depth of 1.00 inch was selected based on NHDES-AoT regulations as of December 2008. Using the NHDES BMP Worksheet, a water quality flow rate of 0.833 cfs was calculated. See the WQF results from the sheet below:

0.92 ac	A = Area draining to the practice
0.80 ac	A _I = Impervious area draining to the practice
0.86 decimal	I = percent impervious area draining to the practice, in decimal form
0.83 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.76 ac-in	WQV= 1" x Rv x A
2,765 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.83	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$
0.2	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.033	inches	Ia = initial abstraction. Ia = 0.2S
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.833	cfs	WQF = $q_u x WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 mi^2/640 ac$

Fig. 1 – NHDES BMP Worksheet for WQF

Jellyfish Filter Design Summary

The Jellyfish for this site was sized to provide **5 Hi Flo and 1 Drain Down cartridge** in order to meet the water quality flowrate requirement (calculations seen below). In order to house this number of cartridges, Contech Engineered Solutions (Contech) recommends a JF0806-5-1, which is an 8'x6' Precast Vault Jellyfish Filter.

 $N_{cartridges} = Q_{Treat} \times 449 \frac{gpm}{cfs} \le Q_{(cartridges)}$ Hyd. Load

 $0.833 cfs \times 449 gpm/cfs \le (x)80 gpm/ft^2 + (y)40 gpm/ft^2$

 $N_{cartridges} = [x = 5; y = 1]$ Hyd. Load

Hydraulic Loading Requires: (5) Hi Flo, (1) Drain Down Cartridges

Maintenance:

Contech offers a network of Preferred Service Providers that have the capability to perform all necessary inspections, compliance reporting and cleaning services. Contech recommends inspecting the system annually and maintaining the system at the recommendation of the annual inspection. Full maintenance is typically required every 24-36 months. Please contact Contech's Maintenance Department for all questions regarding maintenance at (503) 258-3157 or visit our website at <u>www.ContechES.com</u>.

Thank you for the opportunity to present this information to you and your client.

Sincerely,

Pat Valentine PE Stormwater Design Engineer Contech Engineered Solutions, LLC.

JELLYFISH DESIGN NOTES

JELLYFISH TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE LENGTH AND THE NUMBER OF CARTRIDGES. THE STANDARD PEAK DIVERSION STYLE WITH PRECAST TOP SLAB IS SHOWN. ALTERNATE OFFLINE VAULT AND/OR SHALLOW ORIENTATIONS ARE AVAILABLE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD

CARTRIDGE SELECTION

CARTRIDGE LENGTH	54"	40"	27"	15"
OUTLET INVERT TO STRUCTURE INVERT (A)	6'-6"	5'-4"	4'-3"	3'-3"
FLOW RATE HI-FLO / DRAINDOWN (CFS) (PER CART)	0.178 / 0.089	0.133 / 0.067	0.089 / 0.045	0.049 / 0.025
MAX. TREATMENT (CFS)	1.96	1.47	0.98	0.54
DECK TO INSIDE TOP (MIN) (B)	5.00	4.00	4.00	4.00

FRAME AND COVER (DIAMETER VARIES) N.T.S.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- SOLUTIONS REPRESENTATIVE. www.ContechES.com
- CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 6. OUTLET PIPE INVERT IS EQUAL TO THE CARTRIDGE DECK ELEVATION.
- GREATER SLOPE.
- ENGINEER OF RECORD.

INSTALLATION NOTES

A BE PROTECTED BY ONE OR MORE OF THE

FOLLOWING: U.S. PATENT NO. 8,287,726; 8,221,618; US 8,123,935;

OTHER INTERNATIONAL PATENTS PENDING

- BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE
- APPROVED WATERSTOP OR FLEXIBLE BOOT)
 - DEBRIS. CONTACT CONTECH TO COORDINATE CARTRIDGE INSTALLATION WITH SITE STABILIZATION.

ELEVATION VIEW

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED

3. JELLYFISH WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.

4. STRUCTURE SHALL MEET AASHTO HS-20 OR PER APPROVING JURISDICTION REQUIREMENTS, WHICHEVER IS MORE STRINGENT, ASSUMING EARTH COVER OF 0' - 10', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 LOAD RATING AND BE CAST WITH THE CONTECH LOGO. 5. STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-857, ASTM C-918, AND AASHTO LOAD FACTOR DESIGN METHOD.

7. THE OUTLET PIPE DIAMETER FOR NEW INSTALLATIONS IS RECOMMENDED TO BE ONE PIPE SIZE LARGER THAN THE INLET PIPE AT EQUAL OR

8. NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED

C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND EXIT POINTS (NON-SHRINK GROUT WITH

D. CARTRIDGE INSTALLATION, BY CONTECH, SHALL OCCUR ONLY AFTER SITE HAS BEEN STABILIZED AND THE JELLYFISH UNIT IS CLEAN AND FREE OF

JELLYFISH JFPD0806 STANDARD DETAIL PEAK DIVERSION CONFIGURATION

Jellyfish Filter Design Summary

158-161 Temple Street: WQU 2

Nashua, NH

Information Provided:

- Total Contributing Drainage Area = 0.72 acres
- Impervious cover = 0.59 acres
- Design Storm = 1.00" Rainfall
- T_c = 6 minutes
- Unit Peak Discharge, qu = 700 cfs/mi²/in
- Presiding agency = Alteration of Terrain Bureau NHDES (AoT-NHDES)

Jellyfish Information and Cartridge Data:

The Jellyfish[®] Filter is an engineered Stormwater quality treatment technology featuring pre-treatment and membrane filtration in a compact stand-alone treatment system that removes a high level and wide variety of Stormwater pollutants. Exceptional pollutant removal is achieved at high treatment flow rates with minimal head loss and low maintenance costs. Each lightweight Jellyfish Filter cartridge contains an extraordinarily large amount of membrane surface area, resulting in superior flow capacity and pollutant removal capacity. The Jellyfish Filter is NJCAT verified in accordance to the TARP Tier II Protocol and New Jersey Tier II Stormwater Test Requirements – Amendments to Tarp Tier II Protocol, with a demonstrated 89% TSS removal efficiency.

- Jellyfish cartridge length = 54 inches (nominal)
- Jellyfish cartridge flowrate (Hi Flo) = 80 gpm
- Jellyfish cartridge flowrate (Drain Down) = 40 gpm
- Jellyfish cartridge headloss = Minimum 18" above outlet

Design Summary:

The Jellyfish for this site was design as a flow-based system, and was sized based on calculating the peak water quality flow rate associated with the design storm. The design storm rainfall depth of 1.00 inch was selected based on NHDES-AoT regulations as of December 2008. Using the NHDES BMP Worksheet, a water quality flow rate of 0.619 cfs was calculated. See the WQF results from the sheet below:

ater Qua	ality Volu	me (WQV)
0.72	ac	A = Area draining to the practice
0.59	ac	$A_I =$ Impervious area draining to the practice
0.82	decimal	I = percent impervious area draining to the practice, in decimal form
0.78	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.57	ac-in	WQV=1" x Rv x A
2,055	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = amount of rainfall. For WQF in NH, $P = 1$ ".
0.78	inches	Q = water quality depth. $Q = WQV/A$
98	unitless	CN = unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$
0.2	inches	S = potential maximum retention. $S = (1000/CN) - 10$
0.042	inches	Ia = initial abstraction. Ia = 0.2S
6.0	minutes	$T_c = Time of Concentration$
700.0	cfs/mi ² /in	qu is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III
0.619	cfs	WQF = $q_u x$ WQV. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by $1 \text{mi}^2/640 \text{ac}$

Fig. 1 – NHDES BMP Worksheet for WQF

Jellyfish Filter Design Summary

The Jellyfish for this site was sized to provide 5 Hi Flo and 1 Drain Down cartridge in order to meet the water quality flowrate requirement (calculations seen below). In order to house this number of cartridges, Contech Engineered Solutions (Contech) recommends a JF6-3-1, which is an 72" Precast Manhole Jellyfish Filter.

> $N_{cartridges} = Q_{Treat} \times 449 \frac{gpm}{cfs} \le Q_{specific}$ Hyd. Load $0.619 cfs \times 449 \frac{gpm}{cfs} \le (x)80 \frac{gpm}{ft^2} + (y)40 \frac{gpm}{ft^2}$ $N_{cartridges} = [x = 3; y = 1]$ Hyd. Load

Hydraulic Loading Requires: (3) Hi Flo, (1) Drain Down Cartridges

Maintenance:

Contech offers a network of Preferred Service Providers that have the capability to perform all necessary inspections, compliance reporting and cleaning services. Contech recommends inspecting the system annually and maintaining the system at the recommendation of the annual inspection. Full maintenance is typically required every 24-36 months. Please contact Contech's Maintenance Department for all questions regarding maintenance at (503) 258-3157 or visit our website at www.ContechES.com.

Thank you for the opportunity to present this information to you and your client.

Sincerely,

Pat Valentine PE Stormwater Design Engineer Contech Engineered Solutions, LLC.

JELLYFISH DESIGN NOTES

JELLYFISH TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. THE STANDARD MANHOLE STYLE IS SHOWN. Ø72" MANHOLE JELLYFISH PEAK TREATMENT CAPACITY IS 1.16 CFS. IF THE SITE CONDITIONS EXCEED 1.16 CFS AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

CARTRIDGE SELECTION

CARTRIDGE DEPTH	54"
OUTLET INVERT TO STRUCTURE INVERT (A)	6'-5"
FLOW RATE HIGH-FLO / DRAINDOWN (cfs) (per cart)	0.18 / 0.09
MAX. CARTS HIGH-FLO / DRAINDOWN	6 / 1

FRAME AND COVER (DIAMETER VARIES) N.T.S.

N.T.S.

GENERAL NOTES:

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- SOLUTIONS REPRESENTATIVE. www.ContechES.com
- DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.

- ENGINEER OF RECORD.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- CLUTCHES PROVIDED)
- APPROVED WATERSTOP OR FLEXIBLE BOOT)

JELLYFISH JF6 STANDARD DETAIL OFFLINE CONFIGURATION

D. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF. E. CARTRIDGE INSTALLATION, BY CONTECH, SHALL OCCUR ONLY AFTER SITE HAS BEEN STABILIZED AND THE JELLYFISH UNIT IS CLEAN AND FREE OF DEBRIS. CONTACT CONTECH TO COORDINATE CARTRIDGE INSTALLATION WITH SITE STABILIZATION AT (866) 740-3318.

C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND EXIT POINTS (NON-SHRINK GROUT WITH

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE (LIFTING

4. STRUCTURE SHALL MEET AASHTO HS-20 OR PER APPROVING JURISDICTION REQUIREMENTS, WHICHEVER IS MORE STRINGENT, ASSUMING EARTH COVER OF 0' - 3', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 LOAD RATING AND BE CAST WITH THE CONTECH LOGO. 5. STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD. 6. NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE

3. JELLYFISH WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED

* PER ENGINEER OF RECORD

SITE SPECIFIC DATA REQUIREMENTS									
STRUCTURE ID	STRUCTURE ID *								
WATER QUALITY	FLOW RAT	Έ(cfs)		*				
PEAK FLOW RAT	E (cfs)				*				
RETURN PERIOD	OF PEAK F	LO	W (yrs)		*				
# OF CARTRIDGE	S REQUIRE	ED ((HF / DD)		*/*				
CARTRIDGE SIZE *									
PIPE DATA:	I.E.	1	MATERIAL	D	AMETER				
INLET PIPE #1	*		*		*				
INLET PIPE #2	*		*		*				
OUTLET PIPE	*		*		*				
RIM ELEVATION					*				
ANTI-FLOTATION	BALLAST		WIDTH		HEIGHT				
			*		*				
NOTES/SPECIAL REQUIREMENTS:									

40"	27"	15"
5'-3"	4'-2"	3'-2"
0.13 / 0.065	0.09 / 0.045	0.05 / 0.025

APPENDIX 6.4

TSS WORKSHEETS

Project No.	2596-01	Sheet	1 of 2			
Project Description	Residential Development					
	159 Templ Street, Manchester NH	ł				
Calculated By	AM	Date	May-19			
Checked By		Date				

TSS REMOVAL CALULATIONS

The calculations provide the TSS removal rate for the Treatment Train #1 (Infiltration System)

Stormwater Management BMP	TSS Removal rate
Street Sweeping Deep Sump Catch Basins Hydrodynamic Separators Filtration Device (Jellyfish) Infiltration System	5 % 15 % 30 % 60 % 90 %
Average Annual Load Street Sweeping	= 100% $= 5.0$ % Removal Rate
	95.0 % TSS Load Remains
TSS Load Remaining Deep Sump Catch Basins	= 95.0 % = <u>15.0</u> % Removal Rate
	80.8 % TSS Load Remains
TSS Load Remaining Hydrodynamic Separators	= 80.8% = <u>30.0</u> % Removal Rate
	56.6 % TSS Load Remains
TSS Load Remaining Filtration Device (Jellyfish) 0	= 56.6 % = 60.0 % Removal Rate
	22.6 % TSS Load Remains
TSS Load Remaining Infiltration System	= $22.6 \ \%$ = <u>90.0</u> % Removal Rate
	2.3 % TSS Load Remains
Percentage of TSS Remaining	- Initial TSS Load = Final TSS Removal Rate
2.30 - 100.0	= 97.7 %

Project No.	2596-01	Sheet	2 of 2			
Project Description	Residential Development					
	159 Templ Street, Manchester NH					
Calculated By	AM	Date	May-19			
Checked By		Date				

TSS REMOVAL CALULATIONS

The calculations provide the TSS removal rate for the Treatment Train #2 (Bioretention System)

Stormwater Management BMP	TSS Removal rate
Street Sweeping Deep Sump Catch Basins Bioretention System	5 % 15 % 90 %
Average Annual Load Street Sweeping	= 100% $= 5.0 % Removal Rate$
	95.0 % TSS Load Remains
TSS Load Remaining Deep Sump Catch Basins	= 95.0% = <u>15.0</u> % Removal Rate
	80.8 % TSS Load Remains
TSS Load Remaining Bioretention System	= 80.8% = <u>90.0</u> % Removal Rate
	8.1 % TSS Load Remains
Percentage of TSS Remaining	- Initial TSS Load = Final TSS Removal Rate
8.10 - 100.0	= 91.9 %

APPENDIX 6.5

SITE EVALUATION REPORT AND INFILTRATION CALCULATIONS

Infiltration Feasibility Report

The project proposes two systems that require infiltration to function properly. These systems are identified on the plans as a Bio-retention System, and Infiltration System.

1. Location of the Practice

Bioretention System #1 – this system is located along the eastern property line.

Infiltration System #1 – this system is located on the western side of the development in front of building 1.

2. Existing topography at the location of the practice

The existing topography within the area of the bio-retention system is very flat, as existing elevations along the property line range from 118.9 - 120.0. The location where the infiltration system is proposed is within the existing pavement. The pavement grade is flat with approximately a 0.5% slope.

3. Test pit location

In accordance with Env-Wq 1504.13, NHDES requires that a minimum number of test pits be dug in the location of each system, depending on the size of the proposed system.

The footprint of the infiltration system is 6,700 S.F. and 3 test pits will be dug in the location of the proposed practice. These pits are identified on the plans as TP-101.

4. Seasonal high-water table (SHWT) and bedrock elevations

Based on boring sampling performed groundwater elevation average between 15-17 below grade. Borings were terminated at depths greater than 20 ft. Based on these tests the groundwater and bedrock elevations are suitable for the infiltration design.

5. Profile Description

Test pit were completed on 6/4/2019 by A&M.

TP-1		Date:	6/4/2019	9:00am	M. Malynowski, PE
		0 - 3	Pavement	-	
		3 - 10	Gravelly Fill	-	Pavement subbase
					Several large pieces of cut
		10 - 40	Med/Course Sand	2.5Y 4/4	granite
	Ар	40 - 48	Loamy Sand	2.5Y 3/3	
	C2	48 - 96	Gravelly Med Sand	10YR 4/6	
Pit Bottom: Observed	96''		Mottles:	n/a	
Water:	n/a		Some glaying:	n/a	
Restrictive	n/a		Pit elevation:	120.2	

Layer: Seepage:	n/a		ESHWT / Restrictive Layer:	-	
TP-2		Date:	6/4/2019	9:35am	M. Malynowski, PE
		0 - 3	Pavement	-	
		3 - 10	Gravelly Fill	-	Pavement subbase
					Several large pieces of cut
		10 - 35	Med/Course Sand	7.5Y 5/8	granite
	Ар	35 - 49	Loamy Sand	2.5Y 3/3	
	C2	49 - 105	Gravelly Med Sand	10YR 4/6	
Pit Bottom: Observed	105"		Mottles:	n/a	
Water: Restrictive	n/a		Some glaying:	n/a	
Layer:	n/a		Pit elevation: ESHWT / Restrictive	120.3	
Seepage:	n/a		Layer:	-	
TP-3		Date:	6/4/2019	9:55a	M. Malynowski, PE
		0 - 3	Pavement	_	

		0 - 3	Pavement	-	
		3 - 19	Gravelly Fill	-	Pavement subbase
		19 - 42	Med/Course Sand	2.5Y 4/4	
	Ар	42 - 52	Loamy Sand	2.5Y 3/3	
	C2	52 - 94	Gravelly Med Sand	10YR 4/6	
-					
Pit Bottom:	94"		Mottles:	n/a	
Observed					
Water:	n/a		Some glaying:	n/a	
Restrictive					
Layer:	n/a		Pit elevation:	120.3	
			ESHWT / Restrictive		
Seepage:	n/a		Laver:	-	

6. Summary of field-testing data used to determine the infiltration rate

Based upon the NRCS soil report the project site is classified as Ur (Urban Land). A site-specific soil survey was performed by TES Environmental Consultants, L.L.C, on April 24, 2019 to determine the on-site soil classification. It was determined that the on-site soils are excessively draining and consistent with the surrounding soils found within the NRCS Soil Report. The saturated hydraulic conductivity (Ksat) rate of the surrounding soils was used for the infiltration rate on-site. The average Ksat value of the Wnc and Uda soils is 95.9 micrometers per second. This value was converted to 13.6 inches per hour, and divided by a factor of safety of 2 to achieve the design infiltration rate of 6.79 \approx 6.5 inches per hour.
APPENDIX 6.6

HYDROLOGIC SOIL PLANS

EX. P EXIST EXIST EXIST EXIST EXISTI

HYDRO HYDRO HYDRO HYDRO EXISTI OPEN IMPER

NOTES:

1. THIS L ON 04 SOIL SC CONSUL ACCORD STANDAR SSSNNE FEBRUARY

		DATE OF APPROVAL	
LEGEND PROPERTY LINE ING 1' CONTOUR ING 5' CONTOUR ING 5' CONTOUR ING EDGE OF PAVEMENT ING CURB OLGGIC SOIL GROUP A OLGGIC SOIL GROUP A ING WETLANDS WATER WIOUS COVER DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED +224-19 BY THOMAS E. SOKOLOSKI, CERTIFICS SCHITTE, MICO OF BOW, NEW HAMPSHIRE NULLARING, LLC, AND NULLARING NULLARING, NEW HAMPSHIRE NULLARING, LLC, AND NULLARING NULLARING, NEW HAMPSHIRE NULLARING, NEW HAMPSHIRE NULLARING, NEW HAMPSHIRE NULLARING, LLC, AND NULLARING, NEW HAMPSHIRE NULLARING NULLARING,		MARKET SQUARE PH	5n m(
PROPERTY LINE ING 1' CONTOUR ING 5' CONTOUR ING EDGE OF PAVEMENT ING EDGE OF GAVEL ING CURB OLOGIC SOIL GROUP A OLOGIC SOIL GROUP A OLOGIC SOIL GROUP A OLOGIC SOIL GROUP D WATER WOUDS COVER DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED SOEATIST #DOAS 0: ESOLICISKI, CERTIFIED SOEATIST #DOAS 0: TOF EXPLOYENTAL UITATIST, LL.C. OF BOW, NEW HAMPSHIRE IN RADADS FOR NEW HAMPSHIRE NEW HAMPSHIRE NEW RADADS FOR NEW HAMPSHIRE NEW MARDE SOURTING MEMBERSHINE IN MARY 2011.	LEGEND	AKCHITECIS	
OLOGIC SOIL GROUP A OLOGIC SOIL GROUP D OLOGIC SOIL GROUP D ING WETLANDS WATER MOUS COVER DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED SCIENTIST #063 OF TES ENVIRONMENTAL ULTATTS, LL.C. OF BOW, NEW HAMPSHIRE IN ROADE WITH THE SITE-SPECIFIC SOIL MAPPING VE SPECIAL PUBLICATION NO. 3, VERSION 4.0, JARY 2011. RESIDENTIAL DEV RESIDENTIAL DEV NASHUA, I PROJECT NO. 259601 DAT SCALE: 1"- 30 DW DESIGNED BY: AM CHE PROJECT NO. 259601 DAT SCALE: 1"- 30 DW DESIGNED BY: AM CHE VELSION BY:	ROPERTY LINE		
TAILER WIOUS COVER DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED A-24-19 BY THOMAS E. SOKOLOSKI, CERTIFIC SCIENTIST #063 OF TES ENVIRONMENTAL ULTANTS, LLC. OF BOW, NEW HAMPSHIRE IN RANAGE WITH THE SITE-SPECIFIC SOIL MAPPINO JARY 2011. RES SPECIAL DUBLICATION NO. 3, VERSION 4.0, JARY 2011. PROJECT NO. 259601 DAT SCALE: 1'-30 DW DESIGNED BY: AM CHE PROJECT NO. 259601 DAT SCALE: 1'-30 DW DESIGNED BY: AM CHE NASHUA, 1 PROJECT NO. 259601 DAT SCALE: 1'-30 DW DESIGNED BY: AM CHE NASHUA, 1 PREVAILED BY: ALLEE NO. 259601 DAT SCALE: 1'-30 DW DESIGNED BY: AM CHE NASHUA, 1 PREVAILD BY: ALLEE NO. 259601 DAT SCALE: 1'-30 DW DESIGNED BY: AM CHE NASHUA, 1 THIS DRAWING MAS BEEN REPARADO WW W. ALL A. IL A. IN ALL AND YELL (03) 027- RX: (03) 027- WORUNN, MA + LANFVILLE, MA	DLOGIC SOIL GROUP A		
DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED 4-24-19 BY THOMAS E. SOKOLOSKI, CERTIFIED SOLENTIST #063 OF TES ENVIRONMENTAL ULTANTS, L.C. OF BOW, NEW HAMPSHIRE IN RARDS FOR NEW HAMPSHIRE AND VERMONT. VE SPECIAL PUBLICATION NO. 3, VERSION 4.0, JARY 2011.	VIOUS COVER		
DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED 4-24-19 BY THOMAS E. SOKOLOSKI, CERTIFIED SCIENTIST #063 OF TES ENVIRONMENTAL ULTANTS, L.L.C. OF BOW, NEW HAMPSHIRE IN RDAROS FOR NEW HAMPSHIRE AND VERMONT. VE SPECIAL PUBLICATION NO. 3, VERSION 4.0, JARY 2011. RESIDENTIAL DEV 159 TEMPLE NASHUA, I PROJECT NO. 2596-01 DAT SCALE: 1"-30' DW DESIGNED BY: AM CHE PREPARED BY: ALLEN & N ASSOCIATE Civil & structural engineerii environmental consulting • Iai w w al I c. m. ai 400 HARVEY R MANCHESTER, NI 100 CAV STREET WOBURN. MA. • LAKEVILLE. MA THIS DAAWING HAS BEEN PREPARED CIVIL SEPREPARED		REV DATE DESCRIPTION	
NE SPECIAL PUBLICATION NO. 3, VERSION 4.0, JARY 2011. PROJECT: RESIDENTIAL DEV 159 TEMPLE NASHUA, I PROJECT NO. 259601 DAT SCALE: 1"-30' DWW DESIGNED BY: AM CHE PREPARED BY: ALLEN & N ASSOCIATE civil & structural engineeri environmental consulting • Iar W W W. a 11 e n m aj 400 HARVEY R MANCHESTER, N TEL: (603) 627- FAX: (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	ETAILED SITE-SPECIFIC SOIL MAP, PERFORMED -24-19 BY THOMAS E. SOKOLOSKI, CERTIFIED CIENTIST #063 OF TES ENVIRONMENTAL LTANTS, L.L.C. OF BOW, NEW HAMPSHIRE IN DANCE WITH THE SITE-SPECIFIC SOIL MAPPING ARDS FOR NEW HAMPSHIRE AND VERMONT.	APPLICANT\OWNER: ZJBV PROPERTIES, LLC c/o JOSEPH'S EQUIPMENT 300 GAY STREET MANCHESTER, NH 03103	
PROJECT NO. 259601 DAT SCALE: 1'-30 DWA DESIGNED BY: AM CHE PREPARED BY: ALLEN & N ALLEN & N ASSOCIATE civil & structural engineerin environmental consulting • La w w • all e n m ai 400 HARVEY R MANCHESTER, NI TEL: (603) 627- FAX: (603) 627- WOBURN, MA • LAKEVILLE, MA THIS DRAWING HAS BEEN PREPARED	E SPECIAL PUBLICATION NO. 3, VERSION 4.0, ARY 2011.	PROJECT: RESIDENTIAL DEVE 159 TEMPLE S NASHUA, N	= ; ; H
SCALE: 1"-30' DW DESIGNED BY: AM CHE PREPARED BY: ALLEN & N ASSOCIATE civil & structural engineerin environmental consulting • lar w w w . a 1 l e n m a j 400 HARVEY R MANCHESTER, NJ TEL: (603) 627- FAX: (603) 627- FAX: (603) 627- WOBURN, MA • LAKEVILLE, MA THIS DRAWING HAS BEEN PREPARED		PROJECT NO. 2596-01 DATE:	
DESIGNED BY: AM CHE PREPARED BY: ALLEN&N ALLEN&N ASSOCIATH civil & structural engineerin environmental consulting • lan w w w . a l l e n m a j 400 HARVEY RO MANCHESTER, NI TEL: (603) 627- FAX: (603)		SCALE: 1" = 30' DWG.	.: (
ALLEN & N ALLEN & N ASSOCIATE civil & structural engineerin environmental consulting • lar w w w . a l l e n m a j 400 HARVEY R MANCHESTER, NI TEL: (603) 627- FAX: (603) 627- FAX: (603) 627- EAX: (603) 627- THIS DRAWING HAS BEEN PREPARED CLIENT/CLIENTS REPRESENTATIVE OR		DESIGNED BY: AM CHEC PREPARED BY: Image: Check state st	KE
ALLEN & N ASSOCIATE civil & structural engineerin environmental consulting • lan www.allenmaj 400 HARVEY RG MANCHESTER, NI TEL: (603) 627- FAX: (603) 627- FAX: (603) 627- FAX: (603) 627- WOBURN, MA • LAKEVILLE, MA THIS DRAWING HAS BEEN PREPARED CLIENT/CLIENT'S REPRESENTATIVE OR			
ASSOCIATE civil & structural engineerin environmental consulting • lan w w w . a l l e n m a j 400 HARVEY R MANCHESTER, NI TEL: (603) 627- FAX: (603) 627- FAX: (603) 627- WOBURN, MA • LAKEVILLE, MA THIS DRAWING HAS BEEN PREPARED CLIENT/CLIENT'S REPRESENTATIVE OR		ALLEN & M	[[
FAX: (603) 627- WOBURN, MA ♦ LAKEVILLE, MA THIS DRAWING HAS BEEN PREPARED CLIENT/CLIENT'S REPRESENTATIVE OR		Civil & structural engineering environmental consulting ◆ land w w w . a l l e n m a j 400 HARVEY RO MANCHESTER, NH TEL: (603) 627-53	3 1s 0 3 0 3 50
PROVIDED COPIES OF DRAWINGS AND SPE MEDIA FOR HIS/HER INFORMATION APPLICATION TO THIS PROJECT. DUE TO MAGNETIC INFORMATION MAY BE MODI		THIS DRAWING HAS BEEN PREPARED IN CLIENT/CLIENT'S REPRESENTATIVE OR PROVIDED COPIES OF DRAWINGS AND SPEC MEDIA FOR HIS/HER INFORMATION A APPLICATION TO THIS PROJECT. DUE TO T MAGNETIC INFORMATION MAY BE MODIFI	
GRAPHIC SCALE OTHERWISE, ALLEN & MAJOR ASSOCIATION GRAPHIC SCALE OTHERWISE, ALLEN & MAJOR ASSOCIATION MEDIA. PRINTED REPRESENTATIONS OF SPECIFICATIONS ISSUED SHALL BE THE	GRAPHIC SCALE	OTHERWISE, ALLEN & MAJOR ASSOCIATES INDICATION OF THE DOCUMENT'S AUTHON MEDIA. PRINTED REPRESENTATIONS OF SPECIFICATIONS ISSUED SHALL BE THE O	, I RSI NI
## ## ### ALLEN & MAJOR ASSOCIATES, INC.'S WOR DRAWING TITLE: DRAWING TITLE:	#\$ }# 	ALLEN & MAJOR ASSOCIATES, INC.'S WORK DRAWING TITLE:	PR
(IN FEET) 1 inch = 3份 ft. Copyright©2019 Allen & Major Associate: All Rights Reserved	(IN FEET) 1 inch = 3份 ft.	PRE-CONSTRUCTION HYDROLOGIC SOIL PLA Copyright©2019 Allen & Major Associates, I All Rights Reserved	۱ ۲ inc.

APPROVED - NASHUA CITY PLANNING BOARD DATE CHAIRMAN DATE SECRETAR) PPROVAL 104 Congress St., STE 203 Portsmouth, NH 03801 PH: 603.501.0202 TECTS DESCRIPTION operties, llc Ph's equipment STREET STER, NH 03103 NTIAL DEVELOPMENT TEMPLE STREET NASHUA, NH 2596-01 DATE: MAY 30, 2019 1" = 30' DWG.: C-2596-01_Soil Mapping AM CHECKED BY: EN & MAJOR OCIATES, INC. ctural engineering + land surveying al consulting + landscape architecture w. allenmajor.com 400 HARVEY ROAD MANCHESTER, NH 03103 TEL: (603) 627-5500 FAX: (603) 627-5501 LAKEVILLE, MA 🔶 MANCHESTER, NH HAS BEEN PREPARED IN ELECTRONIC FORMAT. REPRESENTATIVE OR CONSULTANT MAY BE OF DRAWINGS AND SPECIFICATIONS ON MAGNETIC HER INFORMATION AND USE FOR SPECIFIC THIS PROJECT. DUE TO THE POTENTIAL THAT THE MATION MAY BE MODIFIED UNINTENTIONALLY OR & MAJOR ASSOCIATES, INC. MAY REMOVE ALL HE DOCUMENT'S AUTHORSHIP ON THE MAGNETIC REPRESENTATIONS OF THE DRAWINGS AND SSUED SHALL BE THE ONLY RECORD COPIES OF SSOCIATES, INC.'S WORK PRODUCT. SHEET NO. ONSTRUCTION PHSP-1 OGIC SOIL PLAN

EX. PRO EXISTIN EXISTIN EXISTIN EXISTIN

HYDROL HYDROL HYDROL HYDROL EXISTIN OPEN V IMPERVI

NOTES:

1. THIS DET ON 04-2 SOIL SCI CONSULT ACCORDA STANDAR SSSNNE FEBRUAR

		APPROVED - NASI	HUA CITY PLANNING BOARD
		CHAIRMAN	DATE
		SECRETARY	DATE
		DATE OF APPROV	/AL
CRAPHIC SCALE CRAPH		MARKE SQUAR	T E 104 Congress St., STE 203 Portsmouth, NH 03801 PH: 603.501.0202
EX. PROPERTY LINE EX.STING 1 ¹ CONTOUR	LEGEND	ARCHITEC	TS
HTOROLOGIC SOLL CROUP A HTOROLOGIC SOLL CROUP B CNISTICE WETLANDS OPEN WETRANDS OPEN WETRANDS OPEN WETRANDS DESI THIS DETALED SITE-SPECIFIC SOLL MAP, PERFORMED SOL 524-19 BYT HOMAS E SOKOLOGIC CERTIFED SOL 524-19 BYT HOMAS E SOKOLOGIC SOL MAP, PERFORMENT 1505 TENENTIAL DEVELOPMENT 1505 TENENTIAL DEVELOPMENT 1507 TEN	EX. PROPERTY LINE EXISTING 1' CONTOUR 118 EXISTING 5' CONTOUR 120 EXISTING EDGE OF PAVEMENT EXISTING EDGE OF GRAVEL EXISTING CURB		
SINTELEVINUUS COVER SINTELEVINUES COVERT SINTELEVINUES COVERT SINTELEVINUES COVERT SINTELEVINUES COVERT SINTELEVINUES COVERT SINTELEVINUES SINTELEVI	HYDROLOGIC SOIL GROUP A HYDROLOGIC SOIL GROUP B HYDROLOGIC SOIL GROUP C HYDROLOGIC SOIL GROUP D EXISTING WETLANDS OPEN WATER		
SS: THIS DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED ON 04-24-19 BY THOMAS E. SOKOLOSKI, CERTIFICA CONSULTATIS, LLC, OP BOW, NEW HAMPSHIRE N CONSULTATIS, LLC, OP BOW, NEW HAMPSHIRE N CONSULTATIS, LLC, OP BOW, NEW HAMPSHIRE N SSINKE SPECIAL PUBLICATION NO. 5, VERSION +0, TEBRUARY 2011. RESIDENTIAL DEVELOPMENT SSINKE SPECIAL PUBLICATION NO. 5, VERSION +0, TEBRUARY 2011.			
SI THIS DETAILED SITE-SPECIFIC SOIL MAP, PERFORMED ON 04-24-19 BY THOMAS E. SORIADSKI, CERTIFICA CONSULTATIS, LLC, OF BOW, NEW HAMPSHRE IN CONSULTATIS, LLC, OF BOW, NEW HAMPSHRE IN SOSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TEBRUARY 2011. RESIDENTIAL DEVELOPMENT SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TEBRUARY 2011. RESIDENTIAL DEVELOPMENT SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TEBRUARY 2011. RESIDENTIAL DEVELOPMENT SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TO DESCRIPTION SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TO DESCRIPTION SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TO DESCRIPTION RESIDENTIAL DEVELOPMENT SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, TO DESCRIPTION RESIDENTIAL DEVELOPMENT SSNE, SPECIAL PUBLICATION NO. 3, VERSION 4.0, RESIDENTIAL DEVELOPMENT SSNE, SPECIAL PUBLICATION NO. 4, VERSION 4, VERSIO			
Intel DETULED STE-SPECIFIC SOIL MAP, PERFORMED SOIL SCIENTST #DOBS OF TES ENVIRONMENTAL SOUNDLITATTS #DOBS OF TES ENVIRONMENTAL SSINNE SPECIAL PUBLICATION NO. 3, VERSION 4.0, FEBRUARY 2011. REST DENTIFIC SOIL MAPPING SSINNE SPECIAL PUBLICATION NO. 3, VERSION 4.0, FEBRUARY 2011. RESTIDENTIAL DEVELOPMENT 159 TEMPLE STREET NASHUA, NH PROJECT: RESIDENTIAL DEVELOPMENT 159 TEMPLE STREET NASHUA, NH PROJECT: AM CHECKED BY: MARTINE NO. MAY 30, 2019 SCALE: 1"-30 DVG: C259601 Soil Mapping DESIGNED BY: MARTINE NO. MAY 30, 2019 SCALE: 1"-30 DVG: C259601 Soil Mapping DESIGNED BY: MARTINE NO. MARTINE NO. VERIENTIAL CONSTRUCTION NO HARTY NO. MARTINE NO. MARTINE NO. MARTINE N	ES:		
GRAPHIC SCALE Image: Scale in the second state i	ON 04-24-19 BY THOMAS E. SOKOLOŠKI, CERTIFIED SOIL SCIENTIST #063 OF TES ENVIRONMENTAL CONSULTANTS, L.L.C. OF BOW, NEW HAMPSHIRE IN ACCORDANCE WITH THE SITE-SPECIFIC SOIL MAPPING STANDARDS FOR NEW HAMPSHIRE AND VERMONT. SSSNNE SPECIAL PUBLICATION NO. 3, VERSION 4.0, FEBRUARY 2011.	APPLICANT\OWNER: ZJBV PROPERTIE c/o JOSEPH'S EC 300 GAY STREE MANCHESTER, I PROJECT: RESIDENTIA 159 TE NA	ES, LLC QUIPMENT T NH 03103 AL DEVELOPMENT MPLE STREET ASHUA, NH
GRAPHIC SCALE (IN FEET.) 1 inch - #9 TL. SCALE (IN FEET.) 1 inch - #0 TL. SCALE (IN FEET.) 1 I		PROJECT NO. 25	96-01 DATE: MAY 30, 2019
GRAPHIC SCALE GRAPHIC SCALE (IN FEET) LIDCH = 89 ft.		SCALE: 1"	= 30' DWG.: C-2596-01_Soil Mapping
GRAPHIC SCALE (IN FEET) Linch = #@ ft. (IN FEET) (IN FEET) Linch = #@ ft. (IN FEET) (IN FEET) Linch = #@ ft. (IN FEET) Linch = #With A FEET MARKARARARARARARARARARARARARARARARARARAR		DESIGNED BY:	AM CHECKED BY: MM
GRAPHIC SCALE (IN FEET) 1 inch = 30 ft. WOBURN, MA ← LAKEVILLE, MA ← MANCHESTER, NH WOBURN, MA ← LAKEVILLE, MA ← MANCHESTER, NH WOBURN, MA ← LAKEVILLE, MA ← MANCHESTER, NH THIS DRAWING HAS BEEN PREPARED IN ELECTRONIC FORMAT. CLIENT/CLIENTS REPRESENTATIVE OR CONSULTANT MANY BE PROVIDED COPIES OF DRAWINGS AND SPECIFIC APPLICATION TO THIS PROJECT. DUE TO THE POTENTIAL THAT THE MAGNETIC INFORMATION MAY BE MODIFIED UNINTENTIONALLY OR MEDIA. PRINTED REPRESENTATIONS OF THE DRAWINGS AND SPECIFICATIONS ISSUED SHALL BE THE ONLY RECORD COPIES OF ALLEN & MAJOR ASSOCIATES, INC.'S WORK PRODUCT. DRAWING TITLE: POST-CONSTRUCTION HYDROLOGIC SOIL PLAN Copyright@2019.Allen & Major Associates, Inc.'		ALLEN ALLEN ASSOCI civil & structural e environmental consu w w w . a 1 1 400 T MANCH TEL FAX	& MAJOR & MAJOR ATES, INC. engineering • land surveying ulting • landscape architecture l e n m a j o r . c o m HARVEY ROAD HESTER, NH 03103 .: (603) 627-5500 :: (603) 627-5501
GRAPHIC SCALE (IN FEET) 1 inch = 30 ft. GRAPHIC SCALE (IN FEET) COpyright@2019 Allen & Major Associates, Inc. (IN FEET) Copyright@2019 Allen & Major Associates, Inc. (IN FEET) Copyright@2019 Allen & Major Associates, Inc.		WOBURN, MA LAK	EVILLE, MA 🔶 MANCHESTER, NH
(IN FEET) 1 inch = ❀♥ ft. Copyright@2019 Allen & Major Associates, Inc. All Picture Construction PHSP-2	GRAPHIC SCALE ◎ ## ## ## ### ####	I HIS DRAWING HAS BEE CLIENT/CLIENT'S REPRESEN PROVIDED COPIES OF DRAW MEDIA FOR HIS/HER IN APPLICATION TO THIS PRO. MAGNETIC INFORMATION M OTHERWISE, ALLEN & MAIO INDICATION OF THE DOCU MEDIA. PRINTED REPRESE SPECIFICATIONS ISSUED SH ALLEN & MAIOR ASSOCIATE	IN FREFARED IN ELECTRONIC FORMAT. ITATIVE OR CONSULTANT MAY BE VINGS AND SPECIFICATIONS ON MAGNETIC FORMATION AND USE FOR SPECIFIC JECT. DUE TO THE POTENTIAL THAT THE MAY BE MODIFIED UNINTENTIONALLY OR OR ASSOCIATES, INC. MAY REMOVE ALL MENT'S AUTHORSHIP ON THE MAGNETIC ENTATIONS OF THE DRAWINGS AND IALL BE THE ONLY RECORD COPIES OF IS, INC.'S WORK PRODUCT.
(IN FEET) 1 inch = ⅔⊕ ft. POST-CONSTRUCTION HYDROLOGIC SOIL PLAN Copyright©2019 Allen & Major Associates, Inc. All Pinths Paramad		DRAWING TITLE:	SHEET No.
A II R IODIN RESERVED	(IN FEET) 1 inch = 登母 ft.	POST-CONST HYDROLOGIC Copyright©2019 Allen &	RUCTION SOIL PLAN Major Associates, Inc. Reserved

APPENDIX 6.7

SITE SPECIFIC SOIL SURVEY REPORT

GEOTECHNICAL ENGINEERING EVALUATION and RECOMMENDATIONS

Residential Development 158-161 Temple Street Nashua, New Hampshire

May 30, 2019

Project No. 19.068.NH

PREPARED FOR: ZJBV Properties C/O Joseph Equipment Co. 300 Gay Street Manchester, NH 03103 PREPARED BY: Miller Engineering & Testing, Inc.

100 Sheffield Road, POB 4776 Manchester, NH 03108-4776

MILLER ENGINEERING & TESTING INC.

GEOTECHNICAL / SOIL BORINGS / ENVIRONMENTAL / SOILS / CONCRETE / MASONRY / STEEL / ROOFING / ASPHLAT INSPECTION Mail all correspondence to: 100 SHEFFIELD ROAD · PO BOX 4776 · MANCHESTER, NH 03108-4776 · TELEPHONE (603)668-6016 · Fax (603)668-8641

May 30, 2019

Mr. Brian Thibeault ZJBV Properties LLC C/O Joseph Equipment Company 300 Gay Street Manchester, NH 03103

RE: Geotechnical Evaluation Report Lots 31 & 38 Temple Street Nashua, NH

Project No. 19.068.NH

Dear Brian:

This report presents the results of a Subsurface Exploration Program and Geotechnical Engineering Evaluation performed for the proposed multi-story residential building project at 158-161 Temple Street (Lots 31 & 38) in Nashua, New Hampshire. The report includes descriptions of the site, subsurface conditions, the proposed project, and our assessment of the impact subsurface conditions might have on design and construction of the proposed two (2), five-story buildings. Details of our subsurface exploration program and geotechnical engineering recommendations are provided in this report.

We appreciate the opportunity to provide geotechnical engineering services to you on this project. If you have any questions or need additional information, please contact us at (603) 668-6016.

Very truly yours, MILLER ENGINEERING & TESTING, INC.

Frank K. Miller, P.E. Executive Vice President

TABLE OF CONTENTS

			Page
		EXECUTIVE SUMMARY	2
1.00		INTRODUCTION	3
2.00		SITE AND PROJECT DESCRIPTION	3
3.00		SUBSURFACE EXPLORATION PROGRAM	4
	3.10	Test Boring Explorations	4
	3.20	Laboratory Testing	4
4.00		SUBSURFACE CONDITIONS ENCOUNTERED	5
5.00		FOUNDATION SUPPORT EVALUATION	7
	5.10	Dewatering and Subgrade Stabilization Efforts	8
	5.20	Re-Use of On-Site Materials-Structure Areas	8
6.00		DESIGN RECOMMENDATIONS	9
	6.10	Insitu Ground Improvement Alternative	9
	6.20	Excavation and Replacement Alternative	10
	6.30	Excavation Perimeter Control	10
	6.40	Structural Fill Placement and Compaction	10
	6.50	Foundation Systems	11
	6.60	Slabs-on-grade	12
	6.70	Seismic Design Considerations	12
	6.80	Groundwater and Foundation Drainage	12
	6.90	Vapor Barrier	13
	6.100	Foundation and Retaining Walls	14
7.00		BITUMINOUS PAVEMENT RECOMMENDATIONS	15
	7.10 7.20 7.30	Subgrade Preparation-Flexible Pavement Structural Fill Placement and Compaction-Bituminous Pavement Areas Bituminous Pavement Structure Design	15 17 17
8.00		FINAL DESIGN AND CONSTRUCTION MONITORING	18
Table 1	1	Summary of Test Boring Results	
Table 2	2	Grainsize Recommendations	

Table I	Summary of Test Boring Results	
Table 2	Grainsize Recommendations	
Figure 1	Subsurface Exploration Location Plan	
Appendix A	Limitations	
Appendix B	MET Test Boring Logs	
Appendix C	Grain Size Test Results	

EXECUTIVE SUMMARY

The project consists in construction of two (2) five-story buildings at 158-161 Temple Street (Lots 31 & 38) in Nashua, New Hampshire. Proposed Building 1 has an approximate 18,600 SF footprint with frontage on Temple Street; and Building 2, positioned just north of Building 1, has an approximate 15,900 SF footprint The proposed ground level finish floor elevation is 121.5 for both buildings indicating 1 to 2 foot thick fills above existing grade will be required. At the time of our subsurface exploration program, the property was largely paved with bituminous concrete for parking lots, driveways and storage areas. An existing 1-story building was present in the southeastern portion of the property, and a concrete loading dock structure with a railroad spur was evident in the central section of the site.

Following a review of this report, you will find that subsurface conditions are characterized by a wide-spread layer of urban fill material underlain by natural organic layers, glaciofluvial soils, and deeper glacial outwash and till strata. The deep seated glacial till layer would normally be deposited directly upon bedrock. A consistent subsurface profile was found at the exploration locations in the proposed Building 1 and Building 2 footprint areas; however, the thickness and elevations of various layers and strata changes vary somewhat beneath the site. Composition of the urban fill material was somewhat different from location to location, but generally the material has very poor engineering properties and is considered unsuitable beneath the proposed structures.

Our investigation and engineering analyses indicate that the subsurface conditions at the Site are not favorable for design and construction of a conventional shallow foundation system to support the proposed buildings without first removing and replacing any unsuitable urban fill materials and organic soils below the proposed building footprint areas, or insitu ground improvement. The controlling subsurface features for site and foundation design and construction are the occurrence of unsuitable fill and organic materials from the surface to depths between 7 and 12.5 feet below existing surface elevations. These fill materials primarily consist of very loose, black, fine sand and silt intermixed with coal ash and clinkers, and some very loose granular fill zones. The fill layer was frequently underlain by organic soils that we interpret to be buried topsoil and; subsoil layers. The urban fill materials and organic soil layers are considered to be compressible and therefore, will not provide adequate long-term support to a spread footing foundation system without soil improvement (such as could be provided by rammed aggregate piers (RAPs) or by excavating and replacing the unsuitable materials).

Our current scope of services includes geotechnical engineering considerations pertaining to foundation design alternatives; however, considering the high likelihood of contaminated urban fill in the building footprints, an environmental consultant should characterize the fill materials and evaluate potential off-site disposal options and costs.

Details of our subsurface findings, geotechnical evaluation and foundation design recommendations are provided herein.

1.00 INTRODUCTION

The subsurface exploration program at the proposed Temple Street Project consisted in advancement of nine (9) test borings on May 17 and 20, 2019.

The scope of the geotechnical services may be summarized as follows:

- 1. Perform necessary field investigations through the advancement of test borings at the locations of proposed Building 1 and 2 footprint areas.
- 2. Evaluate the subsurface conditions and perform geotechnical engineering analyses to develop recommendations for foundation and pavement design and construction.
- 3. Summarize the exploration program, engineering analyses, and evaluation in the form of a geotechnical engineering report.

Presented herein are descriptions of the project, site, and subsurface conditions encountered during the subsurface exploration program. The specific geotechnical engineering recommendations, formulated based on subsurface conditions, are presented herein. Services with respect to development of plans and specifications, construction quality assurance, environmental engineering, and any other services not specifically outlined herein are not included in our current scope of work. The contents of this report are subject to the limitations in Appendix A.

2.00 SITE AND PROJECT DESCRIPTION

The project consists in construction of two (2) five-story buildings at 158-161 Temple Street (Lots 31 & 38) in Nashua, New Hampshire. Proposed Building 1 has an approximate 18,600 SF footprint with frontage on Temple Street; and Building 2, positioned just north of Building 1, has an approximate 15,900 SF footprint At the time of our subsurface exploration program, the property was largely paved with bituminous concrete for parking lots, driveways and storage areas. An existing 1-story masonry block building was present in the southeastern portion of the property, and a concrete loading dock structure with a railroad spur was evident in the central section of the site. Active and abandoned railroad tracks border the northern and eastern property lines, respectively.

According to the Layout & Materials Plan, prepared by Allen & Major Associates, Inc; and the Schematic Design Plan, prepared by Market Square Architects, proposed buildings 1 and 2 will be structurally connected from the 2nd to the 5th level. The Building 1 ground floor will consist of finished space with a concrete slab-on-grade; and Building 2 will consist of parking area for cars. The proposed ground level finish floor elevation is 121.5 for both buildings indicating 1 to 2 foot

thick fills above existing grade will be required. Presumably, both buildings will consist of structural steel framing supported upon a reinforced concrete foundation system.

3.00 SUBSURFACE EXPLORATION PROGRAM

The subsurface exploration program performed for this geotechnical engineering study consisted in the advancement of nine (9) test borings (B-1 through B-9) on May 17 and 20 2019. The exploration locations are depicted in the Subsurface Exploration Location Plan, Figure 1.

3.10 Test Boring Explorations

All test borings were advanced by a drill crew from MET under the supervision of a Geotechnical Engineer. Detailed descriptions of the subsurface conditions are provided on the MET Test Boring Logs presented in Appendix B.

The purpose of the exploration program was to:

- Determine the nature, consistency, and relative density of the soils encountered at the site, and provide detailed descriptions of subsurface strata;
- Determine the thickness and condition of fill and organic layers encountered at the test exploration locations;
- Determine the depth to competent soil and the observed groundwater levels; and
- Determine the depth of "refusal" where encountered at test boring locations.

The test borings were advanced by a drill crew from Miller Engineering & Testing, Inc. using a truck-mounted Diedrich D-50 drill rig turning 2-1/4-inch inside-diameter hollow-stem augers to sampling depths. Samples were taken continuously from the ground surface to a depth of at least 11 feet and then at 5-foot maximum intervals thereafter to termination/refusal depths of the test borings. Samples were obtained using a 1-3/8-inch inside-diameter, split-spoon sampler. Standard Penetration Tests (SPT) were performed at the sampling elevations by driving the split-spoon sampler 18 to 24-inches with a 140-pound hammer falling 30 inches in accordance with ASTM Designation D-1586. The number of blows required to drive the sampler between the 6 and 18-inch increments, termed the N-value, was used to assess the soils relative density and elastic properties.

3.20 Laboratory Testing

Four (4) split-spoon samples were selected at test boring locations from the naturally occurring soil strata for grain size analysis. Results of these tests were used in geotechnical engineering analyses relative to foundation design considerations. Laboratory test results are provided in Appendix C.

4.00 SUBSURFACE CONDITIONS ENCOUNTERED

Results of the test borings indicate that subsurface conditions consist of the following generalized profile from the ground surface downward:

- 1. Bituminous Pavement Layer
- 2. Urban Fill Layer
- 3. Buried Organic Layer
- 4. Glaciofluvial Layer
- 5. Glacial Outwash Soil Stratum

Detailed descriptions of the subsurface conditions encountered are provided on the Test Boring Logs in Appendix B. General descriptions of the various strata encountered are presented below. Table 1 below provides a summary of the test boring results.

Test Boring	Approx	Approx.	Approx.		Approx.	Appi	τοx.
No.	Exist	Proposed	Depth/Elev	, to	Groundwater	Depth/	Elev.
1101	Ground	FFF (ft)	Bottom of Unsui	table Fill	Elevation (ft)	Test B	oring
	Janal	IIL(II)	and Orean's Lass	(1)		Termina	tion (2)
	Level		and Organic Lay	er(1)(1t)		Termina	tion(2)
	(ft)					(ft	;)
			Depth	Elev.	Elev.	Depth	Elev.
B-1	120.5	121.5	7.0	113.5	106.5	31.0	89.5
B-2	120.9	121.5	8.0	112.9	103.9	41.0	79.9
B-3	120.5	121.5	7.5	113.0	106.5	50.2	70.3
B-4	120.0	121.5	8.0	112.0	106.0	26.0	94.0
B-5	120.0	121.5	8.0	112.0	106.0	26.0	94.0
B-6	120.0	121.5	9.0	111.0	106.0	21.0	99.0
B-7	120.0	121.5	8.0	112.0	104.0	21.0	99.0
B-8	120.0	121.5	9.0	111.0	103.0	24.5	95.5
B-9	120.0	121.5	12.5	107.5		13.0	107.0

TABLE 1

Lots 31 & 38 Temple Street Nashua, NH Test Boring Summary

(1) Unsuitable material consists of Fill and Soft/Loose Natural Organic Soils. The Fill materials consist of black, coal ash and clinkers intermixed at some locations with red brick and organic matter. The Natural organic soils consist of "old" topsoil and subsoil layers that were filled over during development of the property.

- (2) Split-spoon refusal could be due to the presence of very dense soils, boulders, or bedrock. Rock core sampling would be required to determine the nature of refusal and quality of bedrock.
- (3) Test Borings were advanced on May 17 and 20, 2019 Miller Engineering and Testing, Inc. during a design-phase geotechnical engineering investigation.

Bituminous Pavement Layer

All test borings, except for B-7 and B-9, encountered bituminous pavement at the ground surface. The bituminous layer ranged from 2 to 2.8 inches in thickness.

Urban Fill Layer

All test borings encountered an urban fill layer consisting primarily of very loose, dark brown to black, fine to medium sand, some to little silt, and trace to little gravel intermixed with ash, clinkers, coal, red brick and masonry fragments. Occasional grinding of the auger flights during advancement of some boreholes was noted, indicating the presence of boulders, cobbles, or other hard objects (i.e. possible old foundation remnants) within the fill layer. The urban fill layer, commonly ranging from 7 to 12.5 feet thick at most of the test boring locations, was found to be wide-spread throughout the proposed building areas. The layer was comprised of discrete zones consisting of very loose, fine sand, some silt, little gravel material, which was free of building rubble and ash material. However, all borings encountered some ash and clinker materials at various elevations intermixed with the urban fill layer. Standard Penetration Test (SPT) measurements indicate that the fill layer was loose to medium dense with occasional dense and very loose zones.

Buried Organic Layer

Beneath the urban fill, many of the test borings encountered a very soft organic silt layer (old topsoil and subsoil layers) ranging from 0.5 to 2.5 feet in thickness. The layer appeared to be naturally occurring and was probably buried during the original filling of the property.

Glaciofluvial Soil Stratum

The naturally occurring soil beneath the urban fill and organic layers consisted of a glaciofluvial soil stratum. This layer was comprised of brown, fine to coarse sand with little to trace amounts of gravel and silt material. The layer appeared to be laminated with alternating lenses of finer and coarser sand and silt size particles. Standard Penetration Test measurements in the layer generally ranged from 13 to 25 blows per foot (bpf); however, higher and lower values were occasionally measured. Unbalanced hydrostatic pressure in the borehole likely contributed to the relatively low SPT measurements between 24 and 34 feet at the location of boring B-3.

Glacial Outwash Stratum

A dense, glacial outwash soil stratum consisting of brown, fine to coarse sand with some gravel and silt material was encountered beneath the glaciofluvial soil layer. The glacial outwash soil layer was found 24.0 feet, or deeper below the existing ground surface elevations. Standard Penetration Test measurements in the outwash layer were typically greater than 30 blows per foot.

Groundwater Observations

Groundwater measurements were taken at each test boring location after a brief stabilization period following completion of the drilling. The moisture condition of the split-spoon samples was monitored to provide further indications of the groundwater levels. The groundwater levels beneath the building area were measured between elevations 103.0 (test boring B-8) and 106.5 (test boring B-1), indicating a hydraulic gradient dipping gradually from south to north.

It should be noted that groundwater levels might fluctuate from time to time due to factors such as season, temperature, adjacent structures, and other environmental conditions. Groundwater levels at other times, therefore, may be different from those observed and recorded during this exploration program.

5.00 FOUNDATION SUPPORT EVALUATION

Results of the subsurface exploration program indicate that subsurface conditions are favorable for the design and construction of a spread footing and slab-on-grade foundation system for support of proposed Buildings 1 and 2, after ground improvement using a rammed aggregate pier system or excavation and replacement of unsuitable Fill soils\materials and organic layers. Alternatively, deep foundations (e.g. steel H-piles, concrete filled pipe piles or pressure injected footings) could be constructed transferring loads to the glacial till and bedrock layers to provide adequate foundation support. The deep foundation alternatives involve grade beams, pile caps, and perhaps a structural concrete floor slab; and therefore, are likely more expensive solutions, and are not considered further in this report. In addition, deeper test borings and bedrock core sampling would be needed to fully evaluate an end bearing H-pile foundation system.

The spread footings for the proposed Structure may be supported in a combination of the following conditions:

- Naturally occurring, firm and stable, Glaciofluvial soil deposits;
- Compacted Structural Fill consisting of Select Granular Fill placed on the naturally occurring, firm and stable Glaciofluvial soil; and/or
- Ground Improvement elements such as Rammed Aggregate Piers (e.g. Geopiers, Aggregate Piers) installed through the unsuitable urban fill and organic soil layers into the medium dense to dense naturally-occurring glaciofluvial deposits.

The controlling subsurface features for foundation and site design and construction are as follows:

- 1. The presence of between about 7 and 12.5 feet of unsuitable urban fill and organic layers consisting of coal ash and clinkers mixed with sand, gravel, organic silt, boulders, and red brick beneath the building footprint area, requiring over-excavation and replacement with compacted Structural Fill or insitu ground improvement. Environmental testing and evaluation were beyond our scope of services; however, a premium fee should be anticipated for off-site disposal of the urban fill material.
- 2. Unsuitable urban fill and organic layers adjacent to Temple Street and other property boundaries would necessitate relatively deep excavation and installation of temporary earth support systems for perimeter control.

5.10 Dewatering and Subgrade Stabilization Efforts

Groundwater was observed at the exploration locations at depths of about 14 to 16 feet below the existing ground surface. Where deep excavation of unsuitable soils\materials is performed, in areas where RAP's are not utilized, de-watering will be required where the unsuitable materials extend below the groundwater table.

In no case should excavation and the placement and compaction of Structural Fill material occur below the groundwater table. The Site Contractor should implement a dewatering system that will lower the groundwater table at least 12-inches below the excavation level and will allow for the excavation and structural fill/compaction efforts to occur in-the-dry.

At locations where groundwater is encountered during the foundation excavation efforts, the placement of a crushed stone working mat, consisting of 12-inches of ³/₄-inch crushed stone material completely wrapped in Mirafi 140N Filter Fabric, or equal, may be required to stabilize the naturally occurring sand and silt subgrade soils. The crushed stone working mat should be keyed into the subgrade soils with the effort of at least four (4) passes of a 700-pound vibratory plate compactor, or equivalent effort. A Geotechnical Engineer from MET should assess if the placement of a crushed stone working mat is required to stabilize the subgrade soils.

5.20 Re-Use of On-Site Materials – Structure Areas

The inorganic granular portions of the urban fill layer, excluding ash, coal, clinkers, boulders, metal, organic matter, concrete and brick material may be segregated (if considered feasible by the Contractor) and used as fill beneath the ground floor area in low-lying areas of the site. This material, along with the naturally occurring sand and gravel soils that are excavated during the foundation preparation efforts, could be stockpiled, thoroughly mixed and be re-used as fill above footing bases and below the floor. The buried concrete, brick, and boulder materials encountered in foundation excavation areas, could be crushed on-site and blended with granular soils, to manufacture a suitable material for re-use as Structural Fill.

The stockpiled soil materials that are intended to be re-used within the structure footprint and pavement areas should be protected from excess moisture and frost, as saturated and/or frozen soil materials will not be considered suitable for reuse.

All fill material to be used below and around the proposed structure foundation system and below the pavement areas should be submitted to the MET Geotechnical Laboratory and be subjected to Grain Size Distribution Analyses and Proctor Determinations prior to use. It can then be determined if the fill materials that are intended to be used for the project meet the gradation specifications presented in Table No. 2. A Geotechnical Engineer from MET, should approve all fill material to be used below and around the structure foundation system prior to placement.

6.00 DESIGN RECOMMENDATIONS

Based on results of the subsurface explorations and our geotechnical evaluations, we present the following foundation recommendations for the design of proposed Buildings 1 and 2 at 158-161 Temple Street in Nashua, New Hampshire.

6.10 Insitu Ground Improvement Alternative

Proprietary ground-improvement methods such as Rammed Aggregate Piers (RAP), Grouted Impact Rammed Aggregate Piers (GAP), and Aggregate Piers (AP) (such as designed and installed by Geopier Foundation Company and Hayward Baker) are considered technically viable and economically feasible alternatives capable of sufficiently improving the subsurface urban fill layers in-place to support the proposed construction. RAPs and GAPs both densify the existing fill materials through lateral displacement methods and reinforce the existing urban fill by creating relatively stiff columns through the layer into the naturally occurring medium dense soil stratum. Implementation of this technique will reduce or eliminate potentially contaminated spoils at the ground surface.

We anticipate that 20-inch diameter RAP and/or GAP columns would extend through the full thickness of the urban fill and organic soil layers below the Site and would penetrate into the glaciofluvial soils stratum. The thickness of unsuitable urban fill and organic soils is summarized in Table 1.

With proper site preparation and the use of RAPs or similar ground-improvement techniques, the proposed buildings would be supported on continuous and isolated spread footing foundations with a slab-on-grade ground floor. The foundation system would be proportioned so that post-construction total and differential settlements will be less than 1 inch and ½ inch, respectively, following ground-improvement implementation.

6.20 Excavation and Replacement Alternative

All existing urban fill material, buried organic layers, and all subsurface utilities and structures must be excavated from below the entire building area (footings and slab-on-grade) to expose the underlying, naturally occurring, glaciofluvial soil layer. These materials should be excavated from the zone of stress influence of the building foundation system, which is defined as that area within a 1H:1V slope projecting outward and downward from the bottom outside edge of the perimeter footings to the base of the required excavation. Final excavation to subgrade should be accomplished using an excavator equipped with a flat-edge bucket to reduce subgrade disturbance.

Excavation bases within the naturally occurring glaciofluvial soil layer should be proofrolled in order to densify any naturally occurring loose zones or those, which are created during the excavation process. The proofrolling should consist of a minimum of four (4) passes of a 10-ton vibratory roller, or equivalent effort. Should unstable areas develop during the proofrolling process, due to excess moisture, the vibratory proofrolling efforts should be stopped and static methods should be employed. Footing trench bases should be proofrolled using at least six (6) passes of a 500-pound vibratory plate compactor.

In no case should froze soils remain below the building foundation area. Any frozen materials located within the subgrade soils should be completely removed and replaced structural fill.

6.30 Excavation Perimeter Control

Relatively deep excavations are anticipated to remove urban fill and organic layers adjacent to the property boundaries and streets; therefore, temporary shoring systems should be anticipated during the earthwork operation. The excavation perimeter side-slopes must be constructed in accordance with OSHA 29 CFR Chapter XVII, Subpart P. The excavation slopes must be flattened as needed for safe entry of construction crews and inspectors. The Contractor should select, design, install, and maintain a safe excavation system.

6.40 Structural Fill Placement and Compaction

In areas where fill is required below the proposed building footprint and up to within 8-inches below the bottom of the concrete slab-on-grade, it is recommended that Select Granular Fill material conforming to the gradation specifications in Table 2 or approved on-site materials be used. These materials should be placed in 12-inch maximum loose lifts that are compacted to a minimum of 95 percent of the materials maximum dry density as determined by ASTM Designation D-1557.

The building foundation walls that are not supporting differential earth pressure should be backfilled with Clean Granular Fill conforming to the gradation specifications in Table 1 or inorganic, granular on-site material. These materials should be placed in 12-inch maximum loose lifts and be compacted to a minimum of 95 percent of the materials maximum dry density as determined by ASTM Designation D-1557. Samples of all fill material to be used for the project (on-site material and borrow material) should be submitted to the MET Laboratory prior to placement for evaluation and approval.

6.50 Foundation Systems

A shallow foundation system, consisting of isolated spread footings (under columns) and continuous, strip footings (below interior and exterior load-bearing walls) should be used to support the proposed buildings. The foundation elements should be supported on the naturally occurring medium dense glaciofluvial soils; engineered fill consisting of compacted Select Granular Fill placed on these soils; or RAP improved urban fill material.

Engineering analyses indicate that the foundation elements that will bear on the naturally occurring soils or compacted structural fill should be designed using an allowable net bearing pressure of 4,000 pounds per square foot (2.0 tons per square foot). Foundation elements that will bear on ground improved with RAPs should be designed using an allowable net bearing pressure of 4,000 pounds per square foot (2.0 tons per square foot). The final allowable net bearing pressure will be as determined based on results of settlement analyses by the RAP design engineer.

Spread footings should be a minimum of 3 feet wide. If smaller width footings are to be used, the allowable net bearing pressure should be reduced in direct proportion to the reduction in footing width. Use of this allowable bearing pressure will limit total settlements below footings to less than 1.0 inch. Differential settlement between adjacent footings will be less than 0.5 inch. Settlement would tend to occur as loads are applied; thus most of the settlement will probably occur by the end of construction. Top of interior footings should be embedded at least 6 inches below the bottom of the slab-on-grade elevation.

Lateral forces can be resisted by the shear developed at the base of the footings. Base shear should be calculated using a coefficient of friction of 0.43 for concrete cast directly upon stable, compacted Select Granular Fill.

The design bearing pressure assumes that all exterior footings will be placed at a depth of 4 feet below final exterior grades to provide frost protection for the foundations and to protect them from subfreezing temperatures.

6.60 Slabs-on-Grade

Unless strengthened with RAPs, the urban fill materials and organic soils below building slab areas should be excavated and replaced with compacted Select Granular Fill. A modulus of subgrade reaction (K_V) of 200 psi/inch should be used to proportion the slabs-on-grade. The uppermost 8 inches of material beneath the slabs-on-grade should consist of Base Course Fill that conforms to the gradation specification in Table 2. This material should be placed in one loose lift and should be compacted to a minimum of 95 percent of its maximum dry density, as determined by ASTM D1557.

6.70 Seismic Design Considerations

The proposed ground floor elevations indicate that the buildings will be founded on medium dense silty sand and compacted structural fill soils. These soils are sufficiently dense and the groundwater level is deep enough so as to theoretically preclude seismically induced liquefaction during the design regional seismic event. Accordingly, design provisions for liquefaction are not necessary at this Site.

The New Hampshire State Building Code (2009 International Building Code) requires that all structures be designed to withstand the forces generated by the maximum credible earthquake based on the soil and rock conditions. The soil profile beneath the proposed building constitutes a "stiff soil profile", and we assign the Site a Seismic Site Class of D. The seismic site coefficients for computing the design spectral response acceleration parameters should be:

<u>S</u> s	<u>S</u> 1	$\underline{F}_{\underline{a}}$	\underline{F}_{v}
0.264	0.080	1.59	2.4

6.80 Groundwater and Foundation Drainage Issues

The groundwater levels beneath the building area were measured between elevations 103.0 (test boring B-8) and 106.5 (test boring B-1), indicating a hydraulic gradient dipping gradually from south to north. Groundwater elevations will probably be lower than the likely foundation excavation levels and deep utilities.

Due to the depth to groundwater below the proposed building footprints, it is our opinion that an underdrainage system is not necessary for the proposed slab-on-grade ground floors, based on geotechnical considerations. We do, however, recommend that the buildings be constructed with foundation perimeter drainage systems.

The perimeter drainage system should consist of 4-inch diameter, rigid PVC SDR35 pipe with perforations of ¹/₄- to ¹/₂-inch (openings should be oriented downward). The drain lines should be surrounded by a minimum of 6 inches of ³/₄-inch crushed stone wrapped in a nonwoven geotextile filter fabric (Mirafi 140N or approved equivalent). The foundation drains should be

placed adjacent to the exterior sides of the spread footings at a minimum depth of 4 feet below adjacent exterior grades to protect against frost. Where possible, the foundation drains should be pitched down at a minimum slope of 0.5 percent in the direction of flow. Cleanouts should be provided at every other 90-degree bend in order to provide for future flushing the system as needed.

The foundation drains should be gravity drained to daylight or to a suitable system outlet if feasible or through design of sumps and pumps as required. The final outlet of the drainage systems should be designed by the project Civil Engineer in consideration of all applicable municipal, state, and federal regulations and design stormwater levels within the adjacent stormwater management basin systems. MET can assist the Design Team with foundation drainage systems during the final design phase. Roof downspout drains should not be connected to the foundation drain system. Roof downspouts should be separately tightlined to their discharge outlets.

6.90 Vapor Barrier

An underslab vapor barrier should be installed beneath the concrete slabs-on-grade in order to eliminate potential impacts by water vapor and to protect against transmission of moisture into the floor slab. An underslab vapor barrier will be especially important in areas of the building where the slabs-on-grade will be finished with impermeable surface treatments or floor coverings that may be sensitive to moisture vapors, including tile or carpeting.

The vapor barrier should consist of polyethylene sheeting at least 10-mil thick (Griffolyn Type 65 or approved equal). The sheeting should be overlapped at least one foot at the joints and joined by a manufacturer approved sealant/adhesive. All utility penetrations should be sealed to the vapor barrier in order to render them water tight.

The vapor barrier should be installed within the subslab base course materials as part of a moisture barrier system:

- 1. 4 inches of compacted Base Course Fill should be placed upon the approved subgrade soils below slab areas.
- 2. The vapor barrier should be installed on the compacted Base Course Fill, and should be covered with a separate non-woven geotextile filter fabric (Mirafi 140N or equal) that will serve as a cushion between the vapor barrier and the overlying granular materials. An acceptable alternative to the polyethylene sheeting and separate non-woven geotextile fabric is a heavy-duty vapor barrier consisting of a single layer of Griffolyn® Type-65G high-performance, high-density reinforced polyethylene with a non-woven geotextile.
- 3. An additional 4-inch layer of compacted Base Course Fill, or a 4-inch layer of compacted ³/₄-inch crushed stone, should then be placed on the vapor barrier/filter fabric to promote

drainage from the bottom of the slab during curing, thereby reducing the effects of differential curing which can be a factor in slab curling.

The project architect and/or structural engineer should confirm the relative location of the vapor retarder and take its placement into account in the design curing specification for the slab-on-grade.

6.100 Foundation and Retaining Walls

Foundation walls, where interior and exterior grades are different, should be designed as retaining walls based on "at-rest" earth pressure conditions. The Site might also be constructed with exterior retaining walls, which should be designed using the "active" earth pressure condition if some rotation or translation is allowable. Retaining walls that cannot rotate or translate (e.g., arch-type walls, retained walls, etc.) should be designed using an earth pressure "at rest" condition. Any fill materials and organic soils below the foundation and retaining walls should be removed and replaced with compacted Select Granular Fill.

For foundation and retaining wall design, the earth pressure diagram can be developed based upon the use of an equivalent fluid weights and the other geotechnical design parameters shown below.

DESIGN PARAMET	ERS
φ (select granular backfill)	35°
c (select granular backfill)	0 psf
γ (select granular backfill)	135 pcf
Net allowable bearing pressure	4,000 psf
Equivalent fluid weight (active earth pressure condition, unrestrained walls)	36.6 pcf
Equivalent fluid weight (at-rest earth pressure condition, restrained walls)	57.6 pcf
Equivalent fluid weight (passive earth	360 pcf (neglect the top 2
pressure condition, unrestrained walls)	feet of soil)
Coefficient of sliding friction (between concrete and natural subgrade soils)	0.43

Concrete gravity, mechanically stabilized earth (MSE), and segmental block retaining walls should be designed in accordance with manufacturers' specifications and the geotechnical design criteria above. Typically, the internal design of concrete gravity, MSE, and segmental block retaining wall systems is performed as design-build by the general contractor or earthwork contractor and submitted to the design team for review as a shop drawing. Project Specifications should require that a proposed plan, profile, and wall design calculations be submitted as Shop Drawings to be reviewed by the design team prior to commencing construction of the retaining

walls. The Geotechnical Engineer should determine the "global" factor of safety of the retaining walls using both static and seismic conditions.

In addition to differential earth pressure, surcharge and hydrostatic pressures (if applicable) should be applied to the foundation walls where appropriate. This uniformly distributed surcharge pressure can be resolved into a force (per linear foot of wall length), which would act at a depth of ¹/₂ the wall height below the slab-on-grade.

Retaining walls should be constructed with drainage systems to prevent perched groundwater conditions and hydrostatic pressures from acting against the walls.

The percent vertical load on walls should be based on structural stability analysis. Floor slab and pavement ground pressures should be applied to foundation and retaining walls as applicable. Surcharge forces should be calculated using the following expression:

$$F_{S} = 0.5 * P * H$$

$$Where...$$

$$F_{S} = surcharge force$$

$$= live and dead load from the surcharge (psf)$$

$$H = height of wall (ft)$$

Wall designs should achieve wall stability factors of safety of 2.0 (for overturning), 1.5 (for sliding), and 1.5 for overall ("global") stability. If tiered retaining walls are proposed, their design should account for surcharge pressures that would be imposed by the upper walls.

Unrestrained walls should be designed using 100 percent of the passive earth pressure (neglect the uppermost 2 feet of soil). For restrained walls, the passive earth pressure contribution should be neglected.

7.00 BITUMINOUS PAVEMENT GEOTECHNICAL RECOMMENDATIONS

The surface parking lots will consist of bituminous concrete close to existing ground elevations. The following subgrade preparation recommendations are presented for the proposed bituminous pavement areas:

7.10 Subgrade Preparation – Flexible Bituminous Pavement

Ρ

Based on the results of the test borings, urban fill layers are about 7 to 12.5 feet in thickness below the proposed pavement surface elevations. As previously discussed, the fill material contains variable percentages of organic matter (roots, organic silt), ash, brick, coal fragments, and asphalt remnants. Judging from results of Standard Penetration Tests, the urban fill layer is loose to very loose at many locations, indicating the layer is under-consolidated and likely settling under its own weight. Long-term compression of the urban fill layer will lead to variable ground settlement that could exceed 3 to 6-inches over time. Differential settlement may be reduced using structural geogrid (such as Tensar TriAx Geogrid, or equal) installed beneath the

subbase layer and above the urban fill layer, provided that the Owner can tolerate some long-term deflection of the pavement surface, and more frequent than normal maintenance.

To achieve the highest performance and greatest life span of the pavement structure, all existing fill material would be removed from below the proposed pavement areas of the project. These layers would be replaced with controlled compacted fill layers. Alternatively, the strength (modulus) of the urban fill layer could be stiffened inplace using an aggregate pier ground improvement system. A load transfer platform consisting of structural fill layers and geogrid reinforcement would be constructed beneath the pavement to distribute loads to the aggregate piers.

The pavement structure for the proposed project, as presented herein, should provide a serviceable riding surface. However, assuming the selected approach is "limited" removal of the urban fill layer combined with frequent inspection; more than normal maintenance of the pavement surface should be expected during the lifetime of the pavement structure. In fact, shimming and repaving should be expected as part of the maintenance program.

Once the pavement areas of the site have been excavated to the proposed subgrade level, the exposed materials should be compacted with the effort of four (4) passes of a 10-ton vibratory roller, or equivalent effort under the supervision of a Geotechnical Engineer from MET. Any unstable areas within the existing fill subgrade that are identified under the compaction efforts should be completely excavated and replaced with Clean Granular Fill material meeting the grain size distribution requirements established in Table 2. This material should be placed in 12-inch maximum loose lifts and be compacted to at least 95 percent of the materials maximum dry density as determined by ASTM Designation D-1557.

If highly organic and/or a high concentration of debris materials with void spaces between the particles exist at the exposed pavement subbase level, these areas should be completely removed and replaced as directed by the Geotechnical Engineer.

Areas within the pavement subgrade that are determined to be firm and stable under the compaction efforts will be considered suitable to support the required subbase and base course fill materials.

In no case should soils that become frozen during construction remain below the pavement area. Any frozen materials located within the subgrade soils should be completely removed and replaced with Clean Granular Fill material or the pavement structure material as required. Fill material should not be placed upon a frozen subgrade. The existing urban fill material that is removed as part of the site excavation process might be reused below the proposed pavement areas. However, organic material and hard objects, including boulders, larger than 8-inches should be removed from the subgrade fill layer.

7.20 Structural Fill Placement and Compaction – Bituminous Pavement

Clean Granular Fill conforming to the gradation specifications in Table 2 or suitable urban fill material should be used below the subbase layer. This material should be placed in 12-inch maximum loose lifts and be compacted to a minimum of 95 percent of the materials maximum dry density as determined by ASTM Designation D-1557.

Due to the high percentage of urban materials within the fill layer (e.g. coal, ash, brick, concrete), the fill materials that are removed during the building over-excavation efforts are not considered suitable for re-use as Clean Granular Fill materials.

7.30 Bituminous Pavement Structure Design

Anticipated traffic loading conditions (EASL's) were not provided to us for the project; however, light traffic loading conditions with minimal, if any, tractor trailer or other truck/bus loading conditions are anticipated during the estimated 20 year design life of the pavement structure. Therefore, MET estimated that the total traffic loading conditions during the 20-year design life of the pavement structure to be less than 50,000 EASL's.

Flexible pavement design procedures, as stipulated in "AASHTO Guide for Design of Pavement Structures – 1993," were used to determine the recommended pavement thickness to support the anticipated loadings. This analysis also considered subgrade strength, environmental effects, and serviceability requirements. The following pavement structure section should provide a serviceable driving surface, with periodic maintenance as required, over a 20-year design life:

Layer	Layer Description	Layer Thickness (inches)
<u>Number</u>		
1	Bituminous Wearing Course	1.5
2	Bituminous Binder Course	1.5
3	Crushed Gravel NHDOT 304.3	6.0
4	Bank Run Gravel NHDOT 304.2	12.0
5	Clean Granular Fill Material	As necessary

The bituminous pavement structure should be constructed on a subgrade proofrolled in accordance with Sections 6.20 of this Report. Clean Granular Fill should meet the gradation criteria established in Table 2. All fill materials used below pavements should be placed in maximum 12-inch thick loose lifts. Each lift should be compacted to at least 95 percent of the materials maximum dry density as determined by ASTM Designation D-1557.

The Crushed Gravel and Bank Run Gravel materials should meet the gradation specifications established in the latest edition of the NHDOT "Standard Specifications for Road and Bridge Construction," as referenced in the above table. The Crushed Gravel and Gravel materials and all fill materials used below the pavement subbase should be placed in maximum 12-inch thick loose lifts. Each lift should be compacted to at least 95 percent of the material's maximum dry density as determined by ASTM Designation D 1557.

8.00 FINAL DESIGN AND CONSTRUCTION MONITORING

Representative samples of all backfill materials should be submitted to Miller Engineering & Testing, Inc. for testing to establish their optimum water contents and maximum dry densities, and to compare their gradation characteristics with the requirements in Table 2. In this manner, compaction criteria can be developed, which will provide the materials with adequate strength and minimal distortion. Once testing is completed, Miller Engineering & Testing, Inc. can make final recommendations relative to the placement, the compaction, and the control of these fill materials.

It is recommended that a qualified Geotechnical Engineer or his/her representative be retained to provide engineering services during the excavation and foundation construction phases of the project. This will become particularly important relative to the monitoring of ground improvement operations, foundation/pavement excavations, removal and replacement of unsuitable soils, subgrade stabilization, inspection of footing excavations prior to concrete placements, and the placement of engineered fill materials. This would allow for design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction. The adequacy of fill compaction should be determined by field density testing as fill is placed and compacted.

Lastly, it is recommended that this firm be retained to assist in preparation earthwork specifications and to review final design plans. In the event that any changes in the nature, the design, or the locations of the structures are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and the conclusions of the report modified or verified in writing by Miller Engineering & Testing, Inc.

Figure

Table

TABLE 2

GRADATION SPECIFICATIONS

SELECT BASE **CLEAN** GRANULAR SIEVE COURSE **GRANULAR** SIZE FILL FILL FILL 8" 100 100 100 3" 70 - 100 100 70 - 100 1/2" 40 - 90 40 - 80 40 - 100 25 - 80 30 - 70 25 - 100 No. 4 15 - 70 20 - 60 15 - 95 No. 10 5 - 40 10 - 30 10 - 70 No. 40 No. 200 0 - 12 3 - 10 0 - 15

PERCENTAGE PASSING BY WEIGHT

All borrow fill materials must consist of natural, hard, durable sand and gravel particles. The material must be free of organic material, frozen material, other deleterious matter. Appendix A

LIMITATIONS

Explorations

- 1. The analyses, recommendations and designs submitted in this report are based in part upon the data obtained from subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it will be necessary to re-evaluate the recommendations of this report.
- 2. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and have been developed by interpretation of widely spaced explorations and samples; actual soil transitions are probably more gradual. For specific information, refer to the boring logs.
- 3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, temperature, and other factors differing from the time measurements were made.

<u>Review</u>

4. It is recommended that this firm be retained to review final design plans and specifications. In the event that any changes in the nature, design, or location of the structures are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of the report modified or verified in writing by Miller Engineering & Testing, Inc.

Construction

5. It is recommended that this firm be retained to provide soils engineering services during the excavations and foundation construction phases of the work. This is to observe compliance with the design concepts, specifications, or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction.

Use of Report

- 6. This report has been prepared for the exclusive use of **ZJBV Properties LLC for the proposed Residential Development at 158-161 Temple Street in Nashua, NH** in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made.
- 7. This soil and foundation engineering report has been prepared for this project by Miller Engineering & Testing, Inc. This report was completed for design purposes and may be limited in its scope to prepare an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to design considerations only.

Appendix B

	Λ						P	roject:		Lots 3	31 & 38 Tei	mple St.	Sheet	of	_1
		MILLER	ENGINEERIN	IG & TE	STING	, INC.					Nashua, N	Н	Boring No:	B-1	
							Proje	ect No:			19.068.NI	<u>H</u>	Location:	See Pl	an
·	1(00 Sheffi	eld Road - Ma	anchest	er, NH (03103	Date	Start:			05-17-19				
	Pl	n. (603) 6	68-6016 - Fax	k: (603) 6	568-864	41	Dat	e End:			05-17-19		Approx. Su	face Elev: ±	120.5
											GROUNI	OWATER OBSE	RVATIONS		
		(CASING		SA	MPLER	ł		Date		Depth	Casing At	Stabi	lization Perio	d
Туре			HSA			SS		(05-17-19		14'	31'	Upo	on Completion	
Size		2	2-1/4" ID		1-	3/8" ID									
Hamme	r				1	40 lbs.									
Fall						30"									
Denth/	Cas		SAMPL	E			BLO	ows		Strata					es
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12''	12-18'	' 18-24''	Change		Sample 1	Description		Not
0		-	0.0-0.2	2	11		4	7	7		-: 2" Asph	alt	to 000000 0000	Loomo cilt litt	ula.
-		S-1 S-2	2.0-4.0	24	12	6	6	3	3		gravel (co S-2: Dark	al ash in sample)(l brown/black, fine	FILL)	l, some silt, litt	tle
-		S-3	4.0-6.0	24	9	2	5	3	3		gravel (co S-3: Dark gravel (co	al ash in sample)(l brown/black, fine al ash in sample)(l	FILL) to coarse sand FILL)	l, some silt, litt	tle
6-		S-4	6.0-7.0	12	7	2	5				S-4: Brow	n, fine to medium	sand, some si	lt, little gravel	
	+	S-4A	7.0-8.0	12	7			18	21		(FILL)	wa fire to	and as	vorval trace -: 11	
		S-5	9.0-11.0	24	14	3	10	23	14		S-4A: Bro S-5: Light silt	brown, fine to coarse	arse sand, some gr	e gravel, trace sitt	
12-															
-		S-6	14.0-16.0	24	13	1	11	10	9		S-6: Brow gravel, tra	n, fine to medium ce silt, wet	sand, little co	arse sand and	
18 -															
		S-7	19.0-21.0	24	15	8	13	8	12		S-7: Brow	n, fine sand, some	e silt		
24 —		S-8	24.0-26.0	24	19	3	9	13	16		S-8: Light	brown, fine sand,	, some silt		
30 —		S-9	29.0-31.0	24	22	3	9	13	16		S-9: Brow	n, fine sand, some	e silt		(1)
-												BORING TERM	/INATED AT	31 ft	
36 —															
Driller Helper Inspec	tor:	R. Marcoux I. Donahue Γ. Young	X	COH 0-2 2-4 4-8 8-1 15-	ESIVE CO VERY SOI SOFT MEDIUM 5 STIFF 30 HARD	NSISTEN FT STIFF	CY (Blows	s/Foot)			COHESIONI 0-4 VERY I 4-10 LOOSI 10-30 MED 30-50 DENS 50+ VERY	LESS (Blows/Foot) LOOSE E TUM DENSE SE DENSE		PROPORTION TRACE: 0-10 LITTLE: 10-2 SOME: 20-35 AND: 35-50%	NS USED % 20% %
NOTE	S: ((1) 1' of blo	ow-in, in augers v	when tryi	ng to san	ple.									
REMA	RKS:	THE STRAT WATER LE FLUCTUAT	TIFICATION LINES F VEL READINGS HA TONS IN THE LEVE	REPRESENT VE BEEN M L OF THE C	THE APP ADE IN T ROUNDW	ROXIMAT HE DRILL <u>ATE</u> R MA	E BOUND HOLES A	ARY BE T TIMES DUE TO	TWEEN SO AND UND OTHER FA	IL TYPES. ER CONDI ACTORS TH	TRANSITION TIONS STATE IAN THOSE P	MAY BE GRADUAL. D ON THE BORING L RESENT AT THE TIM	LOGS. IE MEASUREMEN	ITS WERE MADE	3

1	1						Р	roject:		Lots	31 & 38 Ten	nple St.	Sheet	<u>1</u> of	_2_		
		MILLER	ENGINEERI	NG & TE	STING	, INC.				Nashua, NH			Boring No: B	3-2			
							Proje	ect No:			19.068.NH	[- Location: See Plan				
	1	00 Sheffie	eld Road - Ma	anchest	er, NH (03103	Date	e Start:			05-17-19						
	P	n. (603) 60	68-6016 - Fax	x: (603) (008-804	41	Dat	e End:			05-17-19		Approx. Surfa	ace Elev: <u>±</u>	120.9		
											GROUND	WATER OBSE	RVATIONS				
		С	ASING		SA	MPLE	2		Date		Depth	Casing At	Stabili	zation Perio	d		
Туре			HSA			SS		(05-17-19		17'	41'	Upon	Completion			
Size		2-	-1/4" ID		1-	-3/8" ID											
Hammer					1	40 lbs.											
Fall						30"											
Depth/	Cas		SAMPL	E			BLO	ows		Strata		Comula	Description		tes		
Elev.	bl/f	t Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18'	' 18-24''	Change	e	Sample	Description		2°		
0		<u>↓</u> - ↓	0.0-0.2	2	7		8	9			: 2" Aspha	ılt					
_	-	S-14	0.5-1.5	12	5	-			8		S-1: Dark t	prown/black, fine 1 ash in sample)(to coarse sand,	some silt, litt	le		
		S-2	2.0-3.5	18	9		6	3			S-1A: Brow	wn, fine to mediu	im sand, trace sil	t, trace grave	1		
-		S-2A	3.5-4.0	6	2	2	2	2	2		(FILL) S-2: Brown	n fine to medium	sand trace silt.	trace gravel			
		S-3	4.0-6.0	24	17	_	_	_	3		(FILL)			8			
6		S-4	6.0-8.0	24	19	2	1	2	2		S-2A: Darl	k brown, fine san	d, some silt, trac	e gravel			
											S-3: Dark t	prown, fine sand,	some silt, trace	gravel (topso	il)		
_											S-4: Brown	i/Orange, fine sa	nd, some silt (su	bsoil)			
-		S-5	9.0-11.0	24	16	9	22	27	22		S-5: Brown	n, fine to coarse s	and, some grave	el, trace silt			
12 -																	
		S-6	14.0-16.0	24	17	2	7	9	12		S-6: Light	brown, fine sand	, little silt				
8-																	
		S-7	19.0-21.0	24	16	1	8	9	11		S-7: Brown	n/Orange (mottle	d), fine sand, sor	ne silt			
-																	
1																	
24 -			24.0.26.0	24	20	1	5	7	10		C 9. Drouw	Orongo (little m	ottling) fine cou	d come cilt			
		5-0	24.0-20.0	24	20	1			10		5-8: DIOWI	i/Orange (intile ii	iotuning), tine sai	id, some sin			
-																	
-																	
30		S-9	29.0-31.0	24	24	2	6	9	10		S-9: Brown	n/Orange, fine sa	nd, some silt				
50																	
-																	
-		S-10	34.0-36.0	24	23	4	9	19	23		S-10: Brow	/n/Orange, fine s	and, some silt				
36 -																	
Driller	:	R. Marcoux		COH	IESIVE CO	INSISTEN	CY (Blow	s/Foot)			COHESIONL	ESS (Blows/Foot)		PROPORTION	IS USED		
Helper Inspect	: or:	J. Donahue T. Young		0-2 2-4	SOFT	FT					0-4 VERY L 4-10 LOOSE	DOSE		TRACE: 0-109 LITTLE: 10-20	% 0%		
				4-8 8-1	5 STIFF	STIFF					10-30 MEDI 30-50 DENS 50+ VERY F	UM DENSE E DENSE		SOME: 20-359 AND: 35-50%	%		
NOTES	S:			15	50 11 110						JOT VERTE	ENDE					
REMA	RKS:	THE STRAT	IFICATION LINES	REPRESEN	T THE APP	ROXIMAT HE DRILI	E BOUNE	DARY BE	TWEEN SO	IL TYPES.	TRANSITION	MAY BE GRADUAL	LOGS.				
		FILICTUATI	IONS IN THE LEVE		TADE IN I	ATED MA	V OCCUD	DUETO	OTLIED EA	CTOPS T	LIONS STATE	DON THE BOKING I	LOUD.	OWEDE MADE			

Л	1						Pro	oject:		Lots 3	31 & 38 Ten	nple St.	Sheet _	<u>2</u> of <u>2</u>
		MILLER	ENGINEERIN	<u>G & TE</u>	STING	, INC.					Nashua, NH	ł	Boring No:	<u>B-2</u>
							Proje	ct No.:			19.068.NH		Location:	See Plan
	10	00 Sheffi	eld Road - Ma	nchest	er, NH C)3103	Date	Start:			05-17-19			
	Pł	n. (603) 6	68-6016 - Fax	:(603)(68-864	41	Date	End:			05-17-19		Approx. S	urface Elev: ± 120.9
											GROUND	WATER OBSE	RVATIONS	5
		C	CASING		SA	MPLER	1		Date		Depth	Casing At	Sta	bilization Period
Туре			HSA			SS		0	5-17-19		17'	41'	Uj	pon Completion
Size		2	2-1/4" ID		1-	3/8" ID								
Hammer					1	40 lbs.								
Fall						30"								
Depth/	Cas	Samula	SAMPLI	E			BLC	ows		Strata		Samula	Description	tes
Elev.	bl/ft	No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18''	18-24''	Change		Sample	Description	Ž
_														
		S-11	39.0-41.0	24	21	5	14	18	24		S-11. Brow	n/Orange fines	and some sil	t
-			57.0 41.0	24	21	5	14	10	24		D II. DIOW	il orange, fille s	and, some sn	
												BORING TERM	MINATED A	T 41 ft
42 -														
-														
48 —														
54 —														
-														
60 —														
-														
66 —														
72 —														
	 . T	A Marcour	v		ESIVE CO	NSISTER	CV /Pl	(Foct)			COHESION			DDODODTIONS LIGT
Helper	· I	. Donahue	x	0-2	VERY SOF	-1515 I EN FT	CI (BIOWS	r 00t)			0-4 VERY LO	дээ (di0ws/f'00t) ЭОSE		TRACE: 0-10%
Inspect	or:	I. YOUNG		2-4 4-8 8 1	SOFT MEDIUM : 5 STIFF	STIFF					4-10 LOOSE 10-30 MEDI 30-50 DENSI	UM DENSE		LITTLE: 10-20% SOME: 20-35% AND: 35-50%
NOTE	S:			15-	30 HARD						50+ VERY D	ENSE		0,00-50 .2012
DEMA	DIZE	THE OPEN -	THE ATTONY PROF	EDD DOD -		0000	E DOUBLE		110001000	11 11 11 11 12 12 12	TD A MONTON	AVECON		
KEMA	кк5:	THE STRAT WATER LEY	IFICATION LINES R VEL READINGS HAV IONS IN THE LEVEL	EPRESEN /E BEEN N . OF THE C	THE APP ADE IN TI ROUNDW	KOXIMAT HE DRILL ATER MA	E BOUND. HOLES AT Y OCCUP	ARY BET TIMES A DUE TO 4	WEEN SO AND UNDE OTHER FA	IL TYPES. ER CONDIT CTORS TH	I KANSITION I FIONS STATEI IAN THOSE PP	MAY BE GRADUAL O ON THE BORING I ESENT AT THE TIM	LOGS. 1E MEASUREM	ENTS WERE MADE
L		LUCIUAL	LONG IN THE LEVEL		ALCOIND W.	MA	. JELUK	200 100	UTTER PA			LOLIN AT THE HW		LAD MADE.

N	1						Р	roject:		Lots	31 & 38 Ten	nple St.	Sheet	<u>1</u> of	2	
	r	MILLER I	ENGINEERIN	NG & TE	ESTING	, INC.					Nashua, NH 19.068.NH		Boring No: _]	3-3		
							Proje	ect No:					Location:	See Plan		
	10	0 Sheffie	ld Road - Ma	anchest	er, NH (03103	Date Start:			05-20-19						
	Ph	. (603) 66	58-6016 - Fax	k: (603) 6	568-864	41	Date End:				05-20-19		Approx. Sur	face Elev: ± 12	0.5	
											GROUND	WATER OBSE	RVATIONS			
		C.	ASING		SA	MPLER	2		Date		Depth	Casing At	Stabil	ization Period		
Гуре			HSA			SS		()5-20-19		14'	50.2'	Upor	n Completion		
Size		2-	·1/4" ID		1-	-3/8" ID										
Hammer					1	40 lbs.										
Fall						30"										
Denth/	Cas		SAMPL	Æ			BLO	ows	1	Strata					2	
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18''	18-24''	Change		Sample	Description		No.	
)=			0.0-0.2	2	12		3	3	4		-: 2" Aspha	ilt	1 14	. 1	_	
-		S-1 S-2	0.5-2.0 2.0-4.0	18 24	16	3	3	2	2		S-1: Black, (coal ash ir	sample)(FILL)	sand, some silt,	trace gravel		
											S-2: Light	brown, nne sand	, inthe sint, trace	gravel (FILL)		
		S-3	4.0-6.0	24	13	1	1	1/12"			S-3: Light (FILL)	brown/brown, fir	ne sand, little sil	t, trace gravel		
5-		<u>S-4</u>	6.0-6.5	6	4	1 /	1	4			S-4: Dark b	prown, fine sand,	some silt (tops	oil)	_	
		S-4A	6.5-7.5	12	9		1	4	3		S-4A: Brov	wn, fine sand, sor	ne silt (subsoil)	v.al 440.00 oilt	_	
S-4B 7.5-8.0 6 5									5		5-4D: DIOV	win, time to coarse	sand, some gra	vel, trace sit		
-	5-5	14	5	9	8	/		S-5: Brown, fine to coarse sand, some gravel, trace silt								
2-																
			140.160		12 3 4 9 11 S-6: Brown fine to coarse s									1. 1.		
		S-6	14.0-16.0	24	12	3	4	9	11		S-6: Brown, fine to coarse sand, some gravel, trace s					
-																
3-																
		S-7	19.0-20.5	18	12	8	18	12			S-7: Brown to orange, fine to coarse sand, some angul gravel, little silt, wet					
		S-7A	20.5-21.0				8	8 S-7A: Gray, fine sand, some silt			e silt, wet		-			
-																
		S-8	24.0-26.0	24	15	2	3	4	4		S-8: Light	brown, fine sand	, some silt, wet			
-																
)		S-9	29.0-31.0	24	14	WOR	1	2	5		S-9: Light	brown, fine sand	, some silt, wet			
-																
		S-10	34.0-36.0	24	19	WOR	2	4	6		S-10: Light	t brown, fine san	d, some silt, we	t		
5-																
Driller: Helper:	R J.	. Marcoux Donahue		COH 0-2	ESIVE CO	ONSISTEN FT	CY (Blow	s/Foot)			0-4 VERY LO	ESS (Blows/Foot) DOSE		PROPORTIONS U TRACE: 0-10%	USE	
Inspector	г: Т	. Young		2-4 4-8	SOFT MEDIUM	STIFF					4-10 LOOSE 10-30 MEDI	UM DENSE		LITTLE: 10-20% SOME: 20-35%		
				8-1 15-	5 STIFF 30 HARD						30-50 DENS 50+ VERY D	E DENSE		AND: 35-50%		

Л	\mathcal{N}							Project:			ots 31 & 38 Temple St.		Sheet _	of	2	
MILLER ENGINEERING & TESTING. INC							-			Nashua, NH				Boring No: <u>B-3</u>		
								Project No.:			19.068.NH		Location:	Location: See Plan		
100 Sheffield Road - Manchester, NH 03103							Date Start:				05-20-19					
Ph. (603) 668-6016 - Fax: (603) 668-8641								Date End:			05-20-19 Approx. Surface Elev: ± 120.5			0.5		
											GROUND	WATER OBSE	RVATION	S		
CASING				SAMPLEF			t Date			Depth Casing At		Stabilization Period				
Туре			HSA		SS				05-20-19		14' 50.2'		Upon Completion			
Size		2	2-1/4" ID		1-	3/8" ID										
Hammer					140 lbs.											
Fall					30"										_	
Depth/	Cas	as SAMPLE						ows		Strata		<i>.</i> .	-		tes	
Elev.	bl/ft	SampleDepthNo.Range		Pen.	Pen. Rec.		6-12''	12-18	'' 18-24''	Change	Sample Description					
42		S-11	39.0-41.0	24	21	1	5	16	6		S-11: Light brown, fine sand, some silt, wet					
_		S-12	44.0-45.3	16	11	9	19	50/4"	,		S-12: Brown, fine sand, some silt, little gravel					
48-		S-13	49.0-49.2	2	2	50/2"					S-13: Brown, fine sand, some gravel and silt Split-Spoon Refusal at 50.2" BORING TERMINATED AT 50.2 ft				_	
54 —																
60 —																
66 — _ _																
72 -			v			NOTOTO		(Fa-t)			CONFERENCE	555 ml (*)		BD/Jb/Jp/W/At/2/		
Helper: J. Donahue 0-2 VERY SOFT Inspector: T. Young 2-4 SOFT 4-8 MEDIUM STIFF 8-15 STIFF 5 20 UADD							CI (DIVNO/EVUL)				0-4 VERY L0 4-10 LOOSE 10-30 MEDIU 30-50 DENSI 50+ VEPV D	LSS (BIOWS/FOOT) DOSE JM DENSE ENSE		TRACE: 0-10% LITTLE: 10-20% SOME: 20-35% AND: 35-50%	USED	
NOTES	S: RKS:	THE STRA' WATER LE	TIFICATION LINES R	EPRESEN EBEEN N	T THE APP ADE IN TI	ROXIMAT HE DRILL	E BOUND HOLES A'	ARY BE	TWEEN SO	IL TYPES. ER CONDIT	TRANSITION I	MAY BE GRADUAL O ON THE BORING I	LOGS.			
		FLUCTUAT	TIONS IN THE LEVEL	OF THE C	ROUNDW	ATER MA	Y OCCUR	DUE TO	OTHER FA	CTORS TH	IAN THOSE PR	ESENT AT THE TIM	1E MEASUREM	IENTS WERE MADE.		
M						Pr	oject:		Lots 3	31 & 38 Ten	ple St.	Sheet	1 0	f _1_		
-----------------------	-----------------------------------	--	--------------------------------------	--	--------------------------------	--------------------------------	-----------------------------	---------------------------------	-----------------------------------	---	--	------------------------	---	---------------------------------------		
	MILLE	RENGINEERIN	IG & TE	STING	, INC.					Nashua, NH	I	Boring No: _	B-4			
						Proje	ct No:			19.068.NH		Location:	See]	Plan		
	100 Shef	field Road - Ma	incheste	er, NH (03103	Date	Start:			05-20-19						
	Ph. (603)	668-6016 - Fax	:: (603) 6	68-864	41	Date	e End:			05-20-19		Approx. Sur	face Elev: _	± 120		
										GROUND	WATER OBSE	RVATIONS				
		CASING		SA	MPLER	<u>د</u>		Date		Depth	Casing At	Stabil	ization Per	iod		
Туре		HSA			SS		()5-20-19		14'	26'	Upo	n Completio	n		
Size		2-1/4" ID		1-	3/8" ID											
Hammer				1	40 lbs.											
Fall					30"											
Depth/ C	as	SAMPL	E			BLC	OWS		Strata		<i>a</i> .	~ • •		tes		
Elev. bl	/ft Sample No.	e Depth Range	Pen.	Rec.	0-6''	6-12''	12-18"	18-24''	Change		Sample	Description		Not		
0	-	0.0-0.2	2.5	14		6	5	3		-: 2.5" Aspl	halt					
-	S-1	0.5-2.0	18				-			S-1: Brown sample)(FI	u/dark brown, fin LL)	e sand, little sil	t (coal ash ii	1		
-	S-2	4.0-6.0	24	14	1/12"		1/12"			S-2: Brown sample)(FI	ı/dark brown, fin LL)	e sand, little sil	t (coal ash ii	ı		
6-	S-3	6.0-8.0	24	11	2	3	8	6		S-3: Brown (FILL)	, fine to coarse s	and, some grav	el, trace silt	t		
-	S-4	9.0-11.0	24	13	5	7	8	10		S-4: Brown	, fine to coarse s	and, little grave	el, trace silt			
12 —																
_	S-5	14.0-16.0	24	15	4	4	3	3		S-5: Brown wet	, fine to medium	sand, trace silt	, trace grave	el,		
-																
24	S-6	24.0-26.0	24	17	3	3	4	2		S-6: Brown	, fine sand, some	e silt, trace grav	el, wet			
30-											BORING TERM	MINATED AT	26 ft			
36 -	P. Moreco			FORME OF	NEXOTORY	CV (D)	(Fact)			CONFRIME	ESS (Diamone		DDOBOD			
Helper: Inspector:	J. Donahu T. Young	ux ie	0-2 2-4 4-8 8-15 15-3	ESIVE CO VERY SOF SOFT MEDIUM 5 STIFF 30 HARD	FT STIFF	UY (Blows	/root)			0-4 VERY LO 4-10 LOOSE 10-30 MEDIU 30-50 DENSI 50+ VERY D	LSS (BIOWS/Foot) DOSE JM DENSE ENSE		TRACE: 0- LITTLE: 10 SOME: 20-2 AND: 35-50	JNS USED 10% 1-20% 35% 0%		
NOTES:	S: THE STRA WATER L FLUCTUA	ATIFICATION LINES F EVEL READINGS HA VITONS IN THE LEVEI	REPRESENT VE BEEN M L OF THE G	THE APP IADE IN TI ROUNDW	ROXIMAT HE DRILL ATER MA	E BOUND HOLES A' Y OCCUR	ARY BET ITIMES DUE TO	WEEN SO AND UNDE OTHER FA	IL TYPES. ER CONDI CTORS TH	TRANSITION N FIONS STATEL IAN THOSE PR	MAY BE GRADUAL. O ON THE BORING I ESENT AT THE TIM	.OGS. IE MEASUREMEN	TS WERE MAI	DE.		

1	1						Pi	roject:		Lots 2	31 & 38 Ten	nple St.	Sheet of	1
		MILLER	ENGINEERIN	IG & TE	ESTING	. INC.					Nashua, NH	H	Boring No: <u>B-5</u>	
							Proje	ct No:			19.068.NH	[]	Location: See Pla	an
	10	00 Sheffi	eld Road - Ma	nchest	er, NH (03103	Date	Start:			05-17-19			
_	Pł	n. (603) 6	568-6016 - Fax	(603)	668-864	41	Dat	e End:			05-17-19		Approx. Surface Elev: <u>±</u>	120
											GROUND	WATER OBSEI	RVATIONS	
		(CASING		SA	MPLER	2		Date		Depth	Casing At	Stabilization Period	ł
Туре			HSA			SS		(05-17-19		14'	26'	Upon Completion	
Size		2	2-1/4" ID		1-	-3/8" ID								
Hammer					1	40 lbs.								
Fall						30"								
Denth/	Cas		SAMPL	E			BLC	ows		Strata				es
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18'	' 18-24''	Change	•	Sample I	Description	Not
-0		-	0.0-0.2	2.5	13		10	9	7		-: 2.5" Asp	halt rown/black_fine	to medium cand, some silt	_
		S-2	2.0-4.0	24	11	4	3	3	3		little grave	l (coal ash in sam	ple) (FILL)	
		~ -									S-2: Dark t little grave	prown/black, fine l (coal ash in samı	to medium sand, some silt, ple) (FILL)	
		S-3	4.0-5.3	15	10	2	12	50/3"			S-3: Dark b	prown/black, fine	to medium sand, some silt,	
6											fractured ro	I (coal ash in samj ock) (FILL)	ple) (bottom 3" of sample wa	s
		Q A	7000	10	7	1	2				S A. Doul- 1	rown/black for	to madium cand, came all	
		5-4	×0.00	12	6		3	6	0		little grave	l (coal ash in sam	ple) (FILL)	
		S-4A S-5	9.0-11.0	24	16	6	15	21	21		S-4A: Brown	wn, fine to coarse	sand, little gravel, trace silt	
											D D. DIOWI	i, inc to course st	and, indie gruver, duce sin	
12														
12														
		S-6	14 0-15 0	12	7	11	13				S-6. Brown	1 fine to coarse sa	and some gravel trace silt w	zet
		S-6A	15.0-16.0	12	8			11	12		S-6A: Ligh	t brown, fine sand	d, some silt, wet	
18-														
		S-7	19.0-21.0	24	16	3	6	5	34		S-7. Light	brown fine sand	some silt trace gravel wet	
			19.0 21.0	2.	10				51		5 /. Eight	orown, nice suite,	some sin, nuce graver, wet	
24 -					1.5							<i>a</i>		
		S-8	24.0-26.0	24	17	20	37	31	43		S-8: Brown	n, fine to coarse sa	and, some gravel and silt	
												BORING TERM	IINATED AT 26 ft	_
30 —														
36 -														
Drillon	 , T	A Maraow	v			NEISTER		(Feet)			COHESION	ESS (Dlama/E - 4)	DD OD OD T TOY	C LICEP
Helper	· · · · ·	. Donahue	л Э	0-2	VERY SO	FT	CI (Blows	s r oot)			0-4 VERY LO	LOS (BIOWS/FOOL) OOSE	TRACE: 0-10%	S USED
Inspect	or:	1. YOUNG		2-4 4-8 8.1	SOFT MEDIUM 5 STIFF	STIFF					4-10 LOOSE 10-30 MEDI 30-50 DENS	UM DENSE E	LITTLE: 10-20 SOME: 20-35% AND: 35-50%	9% 6
NOTE	5:			15-	30 HARD						50+ VERY D	DENSE	AND. 53-5070	
REMA	RKS.	THE STD AT	FIFICATION LINES	FPRESEN	Г ТНЕ АРР	RUXIWAT	F BOUND	ARY BE	TWEEN SO	II TYDES	TRANSITION	MAY BE GRADUAT		
		WATER LE FLUCTUAT	VEL READINGS HA	VE BEEN N L OF THE C	ADE IN T	HE DRILL	HOLES A' Y OCCUR	T TIMES DUE TO	AND UNDI	ER CONDI	TIONS STATEI	O ON THE BORING LO RESENT AT THE TIMI	OGS. <u>E MEASUREMENTS WERE MADE.</u>	

		MILLER	<u>ENGINE</u> ERIN	<u>G &</u> TE	STING	, INC.	Project: Lots NC.				31 & 38 Ten Nashua, NH	nple St.	Sheet Boring No:	<u> </u>	1
							Proje	ct No:			19.068.NH	[Location:	See Pla	n
	1(00 Sheffi	eld Road - Ma	nchest	er, NH C)3103	Date	Start:			05-20-19				
	Pl	n. (603) 6	68-6016 - Fax	:(603)6	568-864	+1	Date	End:			05-20-19		Approx. S	urface Elev: <u>±</u>	120
											GROUND	WATER OBSE	RVATIONS	5	
		0	CASING		SA	MPLER	٤		Date		Depth	Casing At	Sta	bilization Period	1
Туре			HSA			SS		(05-20-19		14'	21'	U	pon Completion	
Size		2	2-1/4" ID		1-	3/8" ID									
Hammer					1	40 lbs.									
Fall						30"									
Depth/	Cas		SAMPLI	2			BLC	WS		Strata	Sample Description				se
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18'	18-24''	Change		Sample	Description		No.
0		\ -	0.0-0.2	2.5	6		4	4			-: 2.5' Aspł	nalt			
		S-1	0.5-1.5	12	6		4	4	6		S-1: Black,	, fine to coarse sa	and, some silt	, little gravel (coa	al
		S-1A S-2	1.5-2.0 2.0-4.0	6 24	16	3	2	2	2		S-1A: Brov	ole) (FILL) wn, fine sand, litt	tle silt (FILL)		
			4050	10	10						S-2: Brown	n, fine sand, little	silt (FILL)		
		5-5	4.0-5.0	12	10		2	2			S-3: Brown	i, line sand, little	siit (FILL)	14 440.0 - 5	_
6-		S-3A S-4	5.0-6.0 6.0-8.0	12 24	21	2	1	2	3		S-3A: Brown organic roc S-4: Brown	wii/Orange, fine : ots (subsoil) 1 to light brown,	sand, some si fine sand, lit	tle silt (subsoil)	
		S-5	9.0-11.0	24	16	2	4	3	5		S-5: Light	brown, fine sand	, little silt		
12 —															
		S-6	14 0-15 0	12	9	8	16				S-6. Brown	n fine sand som	e silt, wet		0
		S-6A	15.0-16.0	12	7		10	35	34		S-6A: Brow	wn, fine to coarse	e sand, some	gravel little silt	_(1)
-		5 011	15.0 10.0	12				55	51		wet		, some	Gruver, indie sind,	
18 —															
-		S-7	19.0-21.0	24	14	12	24	18	18		S-7: Brown	n, fine to coarse s	sand, some gr	avel and silt, wet	
-												BORING TERM	MINATED A	T 21 ft	
24 —															
-															
30 —															
36 —															
Driller: Helper: Inspect	i I i I or: 7	R. Marcoux J. Donahue T. Young	X	COH 0-2 2-4 4-8 8-1	ESIVE CO VERY SOF SOFT MEDIUM S 5 STIFF	NSISTEN T STIFF	CY (Blows	/Foot)			COHESIONL 0-4 VERY L4 4-10 LOOSE 10-30 MEDI 30-50 DENS	ESS (Blows/Foot) OOSE UM DENSE E		PROPORTION TRACE: 0-10% LITTLE: 10-20 SOME: 20-35% AND: 35-50%	S USED
NOTES	5: ((1) Change	in drilling about	12'.	30 HARD						50+ VERY D	DENSE			
REMA	RKS:	THE STRAT WATER LE	TFICATION LINES R VEL READINGS HAV	EPRESENT	T THE APPI IADE IN TI	ROXIMAT HE DRILL	E BOUND HOLES A	ARY BE	TWEEN SO AND UND	IL TYPES. ER CONDIT	TRANSITION I	MAY BE GRADUAL O ON THE BORING	LOGS.	ENTS WEDE MADE	
		ILUCIUAL	IONS IN THE LEVEL	OF THE C	MUUNDW.	ALLA MA	UCUK	10 10	UTILK FA	CIONS IN	LAN THOSE PR	COLUMN AT THE TIM	IL WILAJUKEN	LITE WERE MADE.	

Л	1						Pi	roject:		Lots 3	31 & 38 Ter	nple St.	Sheet	1	of	1	_
		MILLER	ENGINEERIN	NG & TE	ESTING	, INC.					Nashua, NI	ł	Boring	No: B-	7		
							Proje	ct No:			19.068.NF	[Locatio	on:	See P	lan	_
	10	00 Sheffi	eld Road - Ma	anchest	er, NH (03103	Date	Start:			05-20-19						
	Pł	n. (603) 6	68-6016 - Fax	k: (603) (668-864	41	Dat	e End:			05-20-19		Appro	x. Surfa	ce Elev: 📑	± 120	_
											GROUND	WATER OBSE	RVATI	ONS			
		C	CASING		SA	MPLEF	ł		Date		Depth	Casing At		Stabiliz	ation Perio	od	
Туре			HSA			SS			05-20-19		16'	21'		Upon	Completior	1	
Size		2	-1/4" ID		1-	3/8" ID											
Hammer					1	40 lbs.											
Fall						30"											
Depth/	Cas		SAMPL	Е			BLC	ows	_	Strata							es
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18	" 18-24"	Change		Sample	Descript	tion			ōZ
0		S-1	0.0-1.5	18	5	7	5	19			S-1: Brown	n/Dark brown, fi	ne to coa	rse sand,	some grav	el,	-
		\$ 1.4	1520	6	4				7		little silt (F	TLL)	daamaa	the (EIL I			
		S-1A S-2	2.0-4.0	24	10	1	1	2	3		S-1A: Dari	1/Black, fine to r	nedium s	and, som	_) e silt, trace	,	
_		53	4060	24	15	2	3	4	5		gravel (coa	ll ash in sample)	(trace fin	e organio	e roots in		
		3-3	4.0-0.0	24	15	2	5	+	5		S-3: Brown	n/Black, fine to n	nedium s	and, som	e silt, trace	;	
6-		S-4	6.0-8.0	24	12	2	2	3	1		gravel (coa S-4: Brown	ll ash and brick in n/Black, fine to r	n sample) nedium s)(FILL) and, som	e silt. trace		
											gravel (coa	l ash and brick i	n sample)	(FILL)	,		
-																	
-		S-5	9.0-11.0	24	15	5	8	6	6		S-5: Light	brown, fine sand	, trace sil	t, trace g	ravel		
12 -																	
		S-6	14.0-15.5	18	11	3	6	8			S-6: Brown	n, fine sand, som	e silt				
-		S-6A	15.5-16.0	6	3				25		S-6A: Broy	wn, fine to mediu	ım sand,	some gra	vel, little	silt (1)
												,	,	0	, , , , , , , , , , , , , , , , , , , ,		
18 -																	
		S-7	19.0-21.0	24	10	16	19	15	14		S-7: Brown	n, fine to mediun	n sand, so	me grav	el, little si	lt (2)
-																	
-												BORING TERM	MINATE	D AT 21	ft		
24 —																	
-																	
_																	
30 —																	
-																	
36 -																	
Duillo		Marcau	,			NETERT		(Fa-f)			COUPSION	FSS (D)/F			DOPOPTIC		
Helper	. ŀ : J	. Marcoux Donahue		0-2	VERY SOL	FT	CY (Blows	Foot)			0-4 VERY L	ESS (Blows/Foot) OOSE		I	TRACE: 0-1	INS USE 0%	st.
Inspect	or: 1	. Young		2-4 4-8	SOFT MEDIUM	STIFF					4-10 LOOSE 10-30 MEDI 30.50 DENG	UM DENSE			LITTLE: 10- SOME: 20-3:	20% 5%	
NOTE	<u>s, (</u>	1) Rock in	tin of enlit-enor	8-1 15- m	30 HARD						50+50 DENS 50+ VERY I	DENSE			AID: 35-509	0	
TOLE	. (2) Rock in	tip of split-spoo	n.													
DEP C -	DEC						ND NO			w m							
кема	KKS:	THE STRAT WATER LEV	IFICATION LINES I VEL READINGS HA	KEPRESEN VE BEEN M	I THE APP ADE IN T	ROXIMAT	E BOUND HOLES A	ARY BE T TIMES	AND UNDE	IL TYPES. ER CONDI	TRANSITION	MAY BE GRADUAL O ON THE BORING	 LOGS. ME MEASU	REMENTS	WEREMAN	F	
		LECTUAL		_ 0. 1111.0				20110	JILATA						LICE MIAD		-

N	1						P	roject:		Lots 3	31 & 38 Ten	nple St.	Sheet	1	of _1
		MILLER	ENGINEERIN	IG & TE	<u>ES</u> TING	, INC.					Nashua, NH	ł	Boring N	o: <u>B-8</u>	
							Proje	ct No:			19.068.NH		Location	sS	ee Plan
	1(00 Sheffi	ield Road - Ma	anchest	er, NH ()3103	Date	Start:			05-20-19				
		n. (603) 6	008-0010 - Fax	(: (603) (008-804	+1	Dat	e End:			05-20-19		Approx.	Surface Ele	v: ± 120
								_			GROUND	WATER OBSE	RVATION	NS	
		(CASING		SA	MPLER	2	_	Date		Depth	Casing At	S	tabilization	Period
Туре			HSA			SS			05-20-19		17'	24.5'		Upon Compl	etion
Size			2-1/4" ID		1-	-3/8" ID		_							
Hammer					1	40 lbs.		_							
Fall			SAMPI	F		30**	BI (JWS							
Depth/ Elev.	Cas bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18	" 18-24"	Strata Change		Sample	Descriptio	n	Notes
0		-	0.0-0.2	2.75	11		6	5	5		-: 2.75" As	phalt		1 1/2	P.41
		S-1	0.5-2.0	18	20	2	2	2	2		S-1: Brown gravel (coa	i/Black, fine to n l ash in sample)((FILL)	d, some silt,	little
		5-2	2.0-4.0	24	20	3	3	3	3		S-2: Gray t	o orange, fine sa	nd, little sil	t	
		S-3	4.0-6.0	24	12	4	6	4	7		S-3: Brown	/Orange, fine sa	nd, little sil	t	
6															
		S-4	9.0-10.0	12	8	4	7				S-4: Brown	/Orange, fine sa	nd, trace sil	lt	
		S-4A	10.0-11.0	12	9			13	15		S-4A: Brow	vn/Orange, fine	sand, some	silt	
12 -															
		S-5	14.0-15.2	14	11	8	17	50/2"	,		S-5: Gray,	fine to medium s	sand, some	silt, little gra	vel
18 —															
		S-6	19.0-21.0	24	15	8	9	18	11		S-6: Gray/0	Orange, fine to m	nedium sand	d, some silt, l	ittle
											gravel				
24 —		S-7	24.0-24.5	6	6	10	25/0"				S-7: Brown	n, fine to medium	n sand, little	e silt, little gr	avel (1)
											Split-Spo	on Refusal at 24.	.5'		
											Lar-sr-	BORING TERM	IINATED A	AT 24.5 ft	
30 -															
26															
50 -															
Driller: Helper]	R. Marcou	x	COH 0-2	ESIVE CO	NSISTEN	CY (Blows	/Foot)			COHESIONL 0-4 VERY L	ESS (Blows/Foot)		PROPO	RTIONS USED
Inspect	or:	T. Young		2-4 4-8	SOFT	STIFF					4-10 LOOSE 10-30 MEDI	JM DENSE		LITTL	E: 10-20% : 20-35%
NOTE		(1) 10" - 61	blam in in	8-1 15-	5 STIFF 30 HARD						30-50 DENS 50+ VERY D	E ENSE		AND: 3	35-50%
NOTES	s: ((1) 18" of	DIOW-11, 11 auger	s at time	or sampli	ng.									
	DEC														
REMA	KKS:	THE STRA' WATER LE	TIFICATION LINES I VEL READINGS HA	REPRESEN VE BEEN M	T THE APP MADE IN TI ROUNDW	ROXIMAT HE DRILL	E BOUND HOLES A	ARY BE T TIMES	TWEEN SO S AND UND	IL TYPES. ER CONDI	TRANSITION I FIONS STATEI	MAY BE GRADUAL O ON THE BORING I	LOGS. ME MEASURE	MENTS WEDE	MADE
L		TLUCIUA	LIGING IN THE LEVE		MOUNDW	ATER MA	I ULLUK	ד יוסים	JOINEK FA	LE LOKS IF	LAN THOSE PR	LODINI AL INE III	IL MILASUKE	MENTS WERE	MADE.

N	1						Pr	oject:		Lots 3	31 & 38 Ten	nple St.	Sheet	of	_1_
		MILLER	ENGINEERIN	G & TE	ESTING	, INC.					Nashua, NH	ł	Boring No:	B-9	
							Proje	ct No:			19.068.NH	[Location:	See Pla	in
	10	00 Sheffi	eld Road - Ma	nchest	er, NH (03103	Date	Start:			05-20-19				
	P	h. (603) 6	68-6016 - Fax	:(603)(668-864	11	Date	End:			05-20-19		Approx. Sur	face Elev: <u>±</u>	120
											GROUND	WATER OBSE	RVATIONS		
		(CASING		SA	MPLER	2		Date		Depth	Casing At	Stabi	lization Period	i
Туре			HSA			SS		C)5-20-19		None	13'	Upo	n Completion	
Size		2	2-1/4" ID		1-	3/8" ID									
Hammer					1	40 lbs.									
Fall	_	_				30"									
Depth/	Cas		SAMPLI	2			BLO	WS		Strata		<i>a</i> .			tes
Elev.	bl/ft	Sample No.	Depth Range	Pen.	Rec.	0-6''	6-12"	12-18''	18-24''	Change		Sample	Description		Not
0		S-1	0.0-2.0	24	17	3	4	3	2		S-1: Brown	n/Black, fine to n	nedium sand, so	ome silt, little	
											gravel (coa	l ash and brick in	n sample) (FILI	_)	
		S-2	2.0-4.0	24	5	2	2	2	1		S-2: Brown gravel (coa	n/Black, fine to n l ash in sample)(nedium sand, so FILL)	ome silt, little	
		S-3	4.0-6.0	24	10	1	1	2	1		S-3: Brown gravel (coa	n/Black, fine to n l ash in sample)	nedium sand, so (FILL)	ome silt, little	
6-		S-4	6.0-8.0	24	15	3	3	2	1		S-4: Brown gravel (coa	n/Black, fine to n l ash in sample)	nedium sand, so (FILL)	ome silt, little	
-		S-5	9.0-10.5	18	15	2	4	2			S-5: Brown gravel (coa	n/Black, fine to n l ash and brick ii	nedium sand, so n sample) (FILI	ome silt, trace	
		S-5A	10.5-11.0	6	4	1	2	3			Science for the stand of the standoor s				
12 -		S-6	11.0-12.5	18	15				12		S-6: Gray,	fine sand, little s	ilt, trace fine or	ganic roots	_
- - - 24 - - - - - - - - - - - - - - - - - - -		R Marcou	X	008		NSISTEN	CY (Blows)	Foot)			COHESIONI	FSS (Blows/Foot)		PROPORTION	
Helper: Inspect	or:	J. Donahue T. Young		0-2 2-4	VERY SOI SOFT	T					0-4 VERY L0 4-10 LOOSE	DOSE		TRACE: 0-10% LITTLE: 10-20	6 1%
		C		4-8 8-1	5 STIFF	STIFF					10-30 MEDI 30-50 DENS 50+ VEPV F	UM DENSE E DENSE		SOME: 20-35% AND: 35-50%	b
NOTES	5:			13-	JUIIAKD						JUT VERIL	-1101			
REMA	RKS:	THE STRAT	TIFICATION LINES R	EPRESEN	T THE APP	ROXIMAT	E BOUND	ARY BET	WEEN SO	IL TYPES.	TRANSITION	MAY BE GRADUAL			
		WATER LE FLUCTUAT	VEL READINGS HAV TONS IN THE LEVEL	E BEEN N OF THE C	MADE IN T	HE DRILL ATER MA	HOLES AT Y OCCUR	TIMES A	AND UNDE	ER CONDIT	FIONS STATEI	O ON THE BORING I RESENT AT THE TIM	LOGS. <u>1E MEASUREMEN</u>	TS WERE MADE.	

Appendix C

Tested By: DM/BM

Tested By: DM/BM

Tested By: DM/BM

TES ENVIRONMENTAL CONSULTANTS, L.L.C.

Environmental Planning and Permitting Soil and Wetlands Investigation

SITE-SPECIFIC SOIL SURVEY REPORT

performed at

158-159 Temple Street Nashua, New Hampshire

prepared for

Allen & Major Associates, Inc. 250 Commercial Street Manchester, New Hampshire

TES Project # 19-0046

1494 Route 3A, Unit 1 Bow, NH 03304 (603) 856-8925

tom@tesenviro.comcastbiz.net

May 4, 2019

Mr. Michael A. Malynowski, P.E. Allen & Major Associates, Inc. 400 Harvey Road Manchester, New Hampshire 03103

RE: Site Specific Soil Map 158-159 Temple Street, Nashua, New Hampshire

Dear Mr. Malynowski:

On April 24, 2019 I performed field work on the above-referenced property for a Site Specific Soil Survey as you requested. This Soil Survey was completed utilizing SSSNNE Special Publication No. 3; Site Specific Soil Mapping Standards for New Hampshire and Vermont, Version 4.0, February 2011. The soil legend used for this soil map conforms to the New Hampshire State-Wide Numerical Soils Legend, Issue #10, January 2011 established and maintained by the Natural Resources Conservation Service.

The purpose of this soil survey was to provide information for an Alteration of Terrain permit application related to planned site redevelopment. Field work for this survey included the examination of numerous soil profiles via hand dug spade pits and soil auger borings taken at intervals sufficient to delineate the boundaries between soil map units. The NRCS Soil Survey of Hillsborough County, New Hampshire (Eastern Part) was reviewed to determine the soils that have been mapped on and in the vicinity of the site, which were entirely Urban Land (Ur), with sandy outwash-derived soils such as Windsor-Urban Land Complex (WnC) and Udipsamments, nearly level (UdA) nearby. No New Hampshire-jurisdictional wetlands were observed on or in the immediate vicinity of the site. Ground control for the soil survey was provided by numerous site development features.

The following report includes a Site Specific Soil Map Key with accompanying Hydrologic Soil Groups and High Intensity Soil Survey codes, as well as soil map unit descriptions. The general surface conditions on the site include asphalt pavement, buildings and altered soils with trees or grasses.

If you have any questions regarding the soils on this site and the accompanying report please contact our office.

Very truly yours,

Thomas E. Sokoloski New Hampshire Certified Soil Scientist No. 63

SITE SPECIFIC SOIL MAP UNIT KEY

		Slope	Drainage	HISS	Hydrologic
Symbol*	Map Unit	Class	Class	Symbol	Soil Group
400B/abaaa	Udorthents, sandy	0-8%	Excessively	161BH	A
400B/hbhaa	Udorthents, sandy	0-8%	Undeterminable	761BH**	• A**

* Refer to accompanying report for 5-unit supplemental symbol explanation.

** Assumed based upon adjacent soils without impervious surfaces.

This map product is within the technical standards of the National Cooperative Soil Survey. It is a special purpose product, produced by a certified soil scientist, and is not a product of the USDA Natural Resources Conservation Service. There is a narrative report that accompanies this map and map key. Thomas E. Sokoloski, Certified Soil Scientist #063, of TES Environmental Consultants, L.L.C. in Bow, New Hampshire, performed the site-specific soil mapping on 4/24/2019. This mapping was performed according to the standards of the "Site-Specific Soil Mapping Standards for New Hampshire and Vermont, Version 4.0, January 2011. The Society of Soil Scientists of Northern New England, Special Publication No. 3, publishes these standards.

Supplemental Symbols

The five components of the Disturbed Soil Mapping Unit Supplement are as follows:

Symbol 1: Drainage Class

a-Excessively Well Drained b-Somewhat Excessively Drained c-Well Drained d-Moderately Well Drained e-Somewhat Poorly Drained f-Poorly Drained g-Very Poorly Drained h-Not Determined

Symbol 2 -: Parent Material (of naturally formed soil only, if present)

a-No natural soil within 60" b-Glaciofluvial Deposits (outwash/terraces of sand or sand and gravel) c-Glacial Till Material (active ice) d-Glaciolacustrine very fine sand and silt deposits (glacial lakes) e-Loamy/sandy over silt/clay deposits f-Marine Silt and clay deposits (ocean waters) g-Alluvial Deposits (floodplains) h-Organic Materials-Fresh water Bogs, etc i- Organic Materials-Tidal Marsh

Symbol 3: Restrictive/Impervious Layers

a-None

b-Bouldery surface with more than 15% of the surface covered with boulders

c-Mineral restrictive layer(s) are present in the soil profile less than 40 inches below the soil surface such as hardpan, platy structure or clayey texture with consistence of at least firm, i.e. more than 20 newtons. For other examples of soil characteristics that qualify for restrictive layer, see "Soil Manual for Site evaluations in NH" 2nd Ed., page 3-17, figure 2-14

d-Bedrock in the soil profile 0-20 inches

e-Bedrock in the soil profile 20-60 inches

f-Areas where depth to bedrock is so variable that a single soil type cannot be applied, will be mapped as a complex of soil types

g-Subject to Flooding

h –man-made impervious surface including pavement, concrete, or built-up surfaces (i.e. buildings) with no morphological restrictive layer within control section

Symbol 4 Estimated Ksat* (most restrictive layer excluding symbol 3h above).

a- High b-Moderate c-Low d-Not determined *See "Guidelines for Ksat Class Placement" in Chapter 3 of the Soil Survey Manual, USDA

Symbol 5: Hydrologic Soil Group*

a-Group A b-Group B c-Group C d-Group D e-Not determined

*excluding man-made impervious/restrictive layers

SITE SPECIFIC SOIL MAP UNIT DESCRIPTIONS

Map Unit Symbol:	400B/abaaa
Map Unit Name:	Udorthents, sandy
Landscape Settings:	Regraded or filled land surfaces
Surface Features:	Fill material
Drainage Class:	Excessively
Parent Material:	Filled or regraded glacial outwash material with no mineral restrictive features
Complex:	Yes () No (\mathbf{X})

Nature of Dissimilar Inclusions, Locations and Estimated Percent:

Additional Notes:

SITE SPECIFIC SOIL MAP UNIT DESCRIPTIONS

Map Unit Symbol:	400B/hbhaa
Map Unit Name:	Udorthents, sandy
Landscape Settings:	Developed, impervious land surfaces (buildings, pavement)
Surface Features:	Buildings and pavement
Drainage Class:	Undeterminable
Parent Material:	Filled or regraded glacial outwash material with no mineral restrictive features
Complex:	Yes () No (X)

Nature of Dissimilar Inclusions, Locations and Estimated Percent:

Additional Notes:

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Hillsborough County, New Hampshire, Eastern Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	12
Map Unit Descriptions	12
Hillsborough County, New Hampshire, Eastern Part	14
Om—Occum fine sandy loam, high bottom	14
UdA—Udipsamments, nearly level	14
Ur—Urban land	15
W—Water (less than 40 acres)	16
WnC—Windsor-Urban land complex, 3 to 15 percent slopes	16
Soil Information for All Uses	19
Soil Properties and Qualities	19
Soil Physical Properties	19
Saturated Hydraulic Conductivity (Ksat)	19
Soil Qualities and Features	23
Hydrologic Soil Group	23
References	29

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION				
Area of In	terest (AOI) Area of Interest (AOI)	📄 Spoi	l Area y Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.				
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features	Image: Weight of the second s	Stony Spot Spot er cial Line Features	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed				
0	Blowout Borrow Pit	Water Features Streat Transportation	ams and Canals	Scale.				
× ~ ~	Clay Spot Closed Depression Gravel Pit Gravelly Spot	HI Rails	s state Highways Routes	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)				
۰. ۸ ۹	Landfill Lava Flow Marsh or swamp	Background Aeria	il Roads al Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.				
~ 0 0 × -	Miscellaneous Water Perennial Water Rock Outcrop			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Hillsborough County, New Hampshire, Eastern Part				
+ :: •	Sailine Spot Sandy Spot Severely Eroded Spot Sinkhole			Survey Area Data: Version 20, Sep 7, 2018 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.				
ja ja	Slide or Slip Sodic Spot			Date(s) aerial images were photographed: May 22, 2015—Jun 14, 2017 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background				

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

	1		
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Om	Occum fine sandy loam, high bottom	0.1	0.2%
UdA	Udipsamments, nearly level	0.6	1.1%
Ur	Urban land	52.3	93.0%
W	Water (less than 40 acres)	1.5	2.7%
WnC	Windsor-Urban land complex, 3 to 15 percent slopes	1.6	2.9%
Totals for Area of Interest		56.2	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate

pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Hillsborough County, New Hampshire, Eastern Part

Om—Occum fine sandy loam, high bottom

Map Unit Composition

Occum and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Occum

Setting

Parent material: Sandy and/or coarse-loamy alluvium derived from granite, gneiss or schist

Typical profile

H1 - 0 to 9 inches: fine sandy loam H2 - 9 to 25 inches: fine sandy loam

H3 - 25 to 60 inches: loamy fine sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 48 to 72 inches
Frequency of flooding: Rare
Frequency of ponding: None
Available water storage in profile: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 1 Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Pootatuck

Percent of map unit: 15 percent Hydric soil rating: No

UdA—Udipsamments, nearly level

Map Unit Setting

National map unit symbol: 9ff9 Elevation: 0 to 1,000 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 140 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Udipsamments and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udipsamments

Setting

Parent material: Outwash

Typical profile

H - 0 to 60 inches: sand

Properties and qualities

Slope: 0 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.2 inches)

Minor Components

Not soil

Percent of map unit: 10 percent *Hydric soil rating:* No

Windsor

Percent of map unit: 5 percent Hydric soil rating: No

Hinckley

Percent of map unit: 5 percent Hydric soil rating: No

Ur—Urban land

Map Unit Setting

National map unit symbol: 9ffb Elevation: 0 to 1,000 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 140 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 90 percent

Minor components: 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Minor Components

Windsor

Percent of map unit: 4 percent Hydric soil rating: No

Hinckley

Percent of map unit: 4 percent Hydric soil rating: No

Not named

Percent of map unit: 2 percent Hydric soil rating: No

W—Water (less than 40 acres)

Map Unit Composition Water < 40: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

WnC—Windsor-Urban land complex, 3 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2svmx Elevation: 100 to 960 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Windsor and similar soils: 50 percent *Urban land:* 35 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Windsor

Setting

Landform: Outwash plains, outwash terraces, deltas, dunes Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy

glaciofluvial deposits derived from gneiss

Typical profile

A - 0 to 3 inches: loamy sand Bw - 3 to 25 inches: loamy sand C - 25 to 65 inches: sand

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 4.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No

Description of Urban Land

Typical profile

M - 0 to 10 inches: cemented material

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: 0 inches to manufactured layer
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: Unranked

Minor Components

Hinckley

Percent of map unit: 5 percent Landform: Deltas, outwash plains, eskers, kames Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, rise Down-slope shape: Convex Across-slope shape: Convex, linear Hydric soil rating: No

Udorthents

Percent of map unit: 5 percent

Landform: Deltas, dunes, outwash plains, outwash terraces Landform position (three-dimensional): Riser, tread Down-slope shape: Linear, convex Across-slope shape: Linear, convex Hydric soil rating: No

Deerfield

Percent of map unit: 5 percent Landform: Terraces, deltas, outwash plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Physical Properties

Soil Physical Properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Saturated Hydraulic Conductivity (Ksat)

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

	MAP L	EGEND)	MAP INFORMATION
Area of In	terest (AOI) Area of Interest (AOI)	Backgrou	und Aerial Photography	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils				
Soil Rat	ing Polygons			Warning: Soil Map may not be valid at this scale.
	<= 68.7165			
	> 68.7165 and <= 91.7222			Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
	> 91.7222 and <= 100.0000			contrasting soils that could have been shown at a more detailed scale.
	Not rated or not available			
Soil Rat	ing Lines <= 68.7165			Please rely on the bar scale on each map sheet for map measurements.
~	> 68.7165 and <= 91.7222			Source of Map: Natural Resources Conservation Service
~	> 91.7222 and <= 100.0000			Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
	Not rated or not available			
Soil Rat	ina Points			Maps from the Web Soil Survey are based on the Web Mercator
—	<= 68.7165			distance and area. A projection that preserves area, such as the
•	> 68.7165 and <= 91.7222			Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
	> 91.7222 and <= 100.0000			This product is generated from the USDA-NRCS certified data as
	Not rated or not available			of the version date(s) listed below.
Water Fea	tures			Soil Survey Area: Hillsborough County, New Hampshire, Eastern
\sim	Streams and Canals			Part
Transport	ation			Survey Area Data: Version 20, Sep 7, 2018
+++	Rails			Soil man units are labeled (as snace allows) for man scales
~	Interstate Highways			1:50,000 or larger.
~	US Routes			Date(c) agrial images were photographed: May 22, 2015 Jun
~	Major Roads			14, 2017
~	Local Roads			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
Om	Occum fine sandy loam, high bottom	68.7165	0.1	0.2%
UdA	Udipsamments, nearly level	91.7222	0.6	1.1%
Ur	Urban land		52.3	93.0%
W	Water (less than 40 acres)		1.5	2.7%
WnC	Windsor-Urban land complex, 3 to 15 percent slopes	100.0000	1.6	2.9%
Totals for Area of Intere	st		56.2	100.0%

Rating Options—Saturated Hydraulic Conductivity (Ksat)

Units of Measure: micrometers per second Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Fastest Interpret Nulls as Zero: No Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average) Top Depth: 12 Bottom Depth: 96 Units of Measure: Inches

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the

soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND Area of Interest (AOI) С Area of Interest (AOI)

Soil Rating Polygons А

Soils

A/D

В

С

C/D

Not rated or not available

Not rated or not available

D

Soil Rating Lines

А

B

A/D

B/D

C/D

С

D

Soil Rating Points

А

В

A/D

B/D

an ai

B/D

Water Features

C/D

D

Streams and Canals -

Not rated or not available

Transportation Rails

Interstate Highways -

US Routes \sim

Local Roads ~

Background

Aerial Photography

Major Roads

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Hillsborough County, New Hampshire, Eastern Part

Survey Area Data: Version 20, Sep 7, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2015—Jun 14, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Om	Occum fine sandy loam, high bottom	В	0.1	0.2%
UdA	Udipsamments, nearly level	A	0.6	1.1%
Ur	Urban land		52.3	93.0%
W	Water (less than 40 acres)		1.5	2.7%
WnC	Windsor-Urban land complex, 3 to 15 percent slopes	A	1.6	2.9%
Totals for Area of Intere	est		56.2	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX 6.8

NATURAL HERITAGE RESPONSE LETTER

Request for NHB Review of "Potential Impacts" from the NHB DataCheck Tool
NHB File Number: NHB19-0941
Data Requested: 5/25/2019
Requested By: Name: Michael Malynowski 250 Commercial Street, Manchester, NH 03101 E-mail: mmalynowski@allenmajor.com Phone: 603-627-5500
Project Location: Town: Nashua Tax Map(s)/Lot(s): 39-31, 39-38, 38-47, 39-35
Payment Information. These fields MUST be filled out. Check Number:
Name of Account:
(as printed on the check)
Enclose this completed form with a check in the amount of \$25, made out to "Treasurer, State of NH".
Send the check and the completed form to the following address:
DRED - NHB NHB Reviews 172 Pembroke Road Concord, NH 03301

To: Michael Malynowski, Allen Major Associates 250 Commercial Street Manchester, NH 03101

From: NH Natural Heritage Bureau

Date: 5/29/2019 (valid for one year from this date)

Re: Review by NH Natural Heritage Bureau of request submitted 3/25/2019

NHB File ID:	NHB19-0941	Applicant: N	Aichael Malynowski
Location:	Nashua	. N.	
	Tax Maps: 39-31, 39-38, 38	-47, 39-35	
Project			
Description:	Re-develop of parcels 39-3	, 39-38, & 38-4	17 into a residential project
	consisting of 2 buildings an	d approximately	y 170 units with associated
	parking, utilities and ameni	ies. Parcel 39-	35 will be re-purposed to
	commercial use with existin	g building and	pavement to remain.

The NH Natural Heritage database has been checked by staff of the NH Natural Heritage Bureau and/or the NH Nongame and Endangered Species Program for records of rare species and exemplary natural communities near the area mapped below. The species considered include those listed as Threatened or Endangered by either the state of New Hampshire or the federal government.

It was determined that, although there was a NHB record (e.g., rare wildlife, plant, and/or natural community) present in the vicinity, we do not expect that it will be impacted by the proposed project. This determination was made based on the project information submitted via the NHB Datacheck Tool on 3/25/2019, and cannot be used for any other project.

MAP OF PROJECT BOUNDARIES FOR: NHB19-0941

NHB19-0941

APPENDIX 6.9

SURFACE WATER IMPAIRMENT MAPS

ArcGIS Web Map

Designated_Rivers_Web - Designated_Rivers_24k_Buffer_Quartermile

Municipalities (borders)

Map data © Open StreetMap contributors, CC-BY-SA

Subject to SWQPA

Description

Assessment Unit ID (AUID): NHRIV700040402-09 Assessment Unit Name: NASHUA RIVER Beach (Y/N?): N Impairments related to stormwater: Escherichia coli <u>Metadata</u>

Charts

...|

Select ChartsNo charts to display

• 🔲 No chart

No chart 🚽

Details

• AUID

NHRIV700040402-09 NHRIV700040402-09 N/A

• Shape

N/A

• FID

471 <u>471</u> N/A

• Waterbodyi

NHRIV700040402-09 NHRIV700040402-09 N/A

• Beach

N <u>N</u> N/A

• Waterbodyn

NASHUA RIVER NASHUA RIVER N/A

• Impairment

Escherichia coli

APPENDIX 6.10

ILLICIT DISCHARGE COMPLIANCE STATEMENT

Illicit Discharge Compliance Statement

Responsibility:

The Owner is responsible for ultimate compliance with all provisions of the New Hampshire Stormwater Management Manual, the USEPA NPDES Construction General Permit and responsible for identifying and eliminating illicit discharges (as defined by the USEPA).

OWNER NAME:	ZJBV Properties, LLC c/o Joseph's Equipment
ADDRESS:	300 Gay Street
	Manchester, NH 03103
Tel. Number:	

Engineer's Compliance Statement:

To the best of my knowledge, the attached plans, computations and specifications meet the requirements of the New Hampshire Stormwater Management Manual regarding illicit discharges to the stormwater management system and that no detectable illicit discharges exist on the site. All documents and attachments were prepared under my direction and qualified personnel properly gathered and evaluated the information submitted, to the best of my knowledge.

Included with this statement are site plans, drawn to scale, that identify the location of systems for conveying stormwater on the site and show that these systems do not allow the entry of any illicit discharges into the stormwater management system. The plans also show any systems for conveying wastewater and/or groundwater on the site and show that there are no connections between the stormwater and wastewater systems.

For a redevelopment project (if applicable), all actions taken to identify and remove illicit discharges, including without limitation, visual screening, dye or smoke testing, and the removal of any sources of illicit discharges to the stormwater management system are documented and included with this statement.

APPENDIX 6.11

PIPE SIZING CALCULATIONS

DRAINAGE PIPE DESIGN ANALYSIS

Manning's Formula

V=1.486/n*R $^{2/3}$ *S $^{1/2}$ Q = V*A (25-Year storm) Where: V is the veloctiy in Ft/sec. n is Mannings coefficient of friction R is the Hydraulic Radius S is the slope of the pipe

A&M Job No.	2596-01
Date:	10/18/2019
Project Location	on:
159 Temple S	treet
Nashua NH	
<u>Prepared For:</u> ZJBV Propertie	es

R=Area/Wetted Perimeter

Where: Area=Pi*(R/12)2

Wetted Perimeter=2*Pi*R/12

PIPE	Q _{design}	n	Diameter	Α	Wp	R	S	Q_{full}	Q _{full} ³ Q _{design}	V _{full}	Q _d /Q _f	Results	V _{design}	V _{design} ≤	12 ft/s
	(cfs)		(inches)	(ft ²)	(ft)	(ft)	(feet/foot)	(cfs)		(ft/s)		Fig. 4-4A	(ft/s)		
CB1	0.97	0.013	12	0.79	3.14	0.25	0.0080	3.19	OK	4.06	0.30	0.85	3.45	OK	
CB2	1.86	0.013	12	0.79	3.14	0.25	0.0100	3.56	OK	4.54	0.52	1.00	4.54	OK	
CB3	0.96	0.013	12	0.79	3.14	0.25	0.0100	3.56	OK	4.54	0.27	0.83	3.77	OK	
CB4	1.39	0.013	12	0.79	3.14	0.25	0.0100	3.56	OK	4.54	0.39	0.91	4.13	OK	
CB5	1.08	0.013	12	0.79	3.14	0.25	0.0080	3.19	OK	4.06	0.34	0.88	3.57	OK	
CB6	1.82	0.013	12	0.79	3.14	0.25	0.0080	3.19	OK	4.06	0.57	1.03	4.18	OK	
DMH1	4.65	0.013	15	1.23	3.93	0.31	0.0080	5.78	OK	4.71	0.80	1.12	5.27	OK	
DMH2	1.08	0.013	12	0.79	3.14	0.25	0.0080	3.19	OK	4.06	0.34	0.88	3.57	OK	
DMH3	3.42	0.013	15	1.23	3.93	0.31	0.0080	5.78	OK	4.71	0.59	1.04	4.90	OK	
DMH4	1.88	0.013	12	0.79	3.14	0.25	0.0100	3.56	OK	4.54	0.53	1.01	4.58	OK	
CDS1	2.83	0.013	24	3.14	6.28	0.50	0.0050	16.00	OK	5.09	0.18	0.73	3.72	OK	
CDS2	3.42	0.013	15	1.23	3.93	0.31	0.0080	5.78	OK	4.71	0.59	1.04	4.90	OK	
CDS3	1.83	0.013	12	0.79	3.14	0.25	0.0080	3.19	OK	4.06	0.57	1.03	4.18	OK	
WQ1	4.65	0.013	24	3.14	6.28	0.50	0.0100	22.62	OK	7.20	0.21	0.77	5.54	OK	
WQ2	3.42	0.013	15	1.23	3.93	0.31	0.0080	5.78	OK	4.71	0.59	1.04	4.90	OK	

APPENDIX 6.12

EXTREME PRECIPITATION TABLES

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.452 degrees West
Latitude	42.762 degrees North
Elevation	0 feet
Date/Time	Mon, 22 Apr 2019 11:44:18 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.52	0.68	0.85	1.07	1yr	0.74	1.01	1.24	1.56	1.96	2.48	2.72	1yr	2.19	2.62	3.04	3.73	4.35	1yr
2yr	0.33	0.51	0.64	0.84	1.05	1.32	2yr	0.91	1.21	1.53	1.90	2.37	2.95	3.28	2yr	2.61	3.15	3.66	4.38	4.98	2yr
5yr	0.39	0.61	0.77	1.03	1.32	1.67	5yr	1.14	1.52	1.93	2.41	3.00	3.72	4.17	5yr	3.29	4.01	4.64	5.50	6.22	5yr
10yr	0.44	0.70	0.88	1.20	1.56	1.99	10yr	1.34	1.80	2.31	2.90	3.59	4.44	5.00	10yr	3.93	4.81	5.55	6.54	7.35	10yr
25yr	0.53	0.84	1.06	1.47	1.94	2.51	25yr	1.68	2.25	2.92	3.67	4.55	5.60	6.36	25yr	4.96	6.12	7.05	8.22	9.19	25yr
50yr	0.59	0.95	1.21	1.70	2.30	3.00	50yr	1.99	2.66	3.51	4.41	5.46	6.69	7.64	50yr	5.92	7.35	8.44	9.77	10.89	50yr
100yr	0.68	1.10	1.42	2.01	2.73	3.58	100yr	2.36	3.16	4.20	5.27	6.52	7.99	9.18	100yr	7.07	8.83	10.12	11.62	12.90	100yr
200yr	0.77	1.26	1.63	2.35	3.24	4.28	200yr	2.80	3.75	5.03	6.32	7.82	9.54	11.04	200yr	8.44	10.61	12.14	13.83	15.28	200yr
500yr	0.93	1.53	2.00	2.90	4.07	5.41	500yr	3.51	4.70	6.37	8.03	9.92	12.08	14.09	500yr	10.69	13.54	15.44	17.42	19.14	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.22	0.34	0.42	0.57	0.70	0.80	1yr	0.60	0.78	1.06	1.32	1.67	2.28	2.56	1yr	2.02	2.46	2.71	3.02	3.67	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.20	2yr	0.86	1.17	1.37	1.79	2.29	2.89	3.20	2yr	2.56	3.08	3.57	4.28	4.88	2yr
5yr	0.36	0.55	0.69	0.94	1.20	1.42	5yr	1.04	1.39	1.63	2.11	2.69	3.49	3.89	5yr	3.09	3.74	4.27	5.13	5.81	5yr
10yr	0.39	0.61	0.75	1.05	1.36	1.60	10yr	1.17	1.57	1.82	2.39	3.04	4.02	4.51	10yr	3.56	4.33	4.91	5.87	6.64	10yr
25yr	0.45	0.68	0.85	1.21	1.59	1.87	25yr	1.38	1.83	2.13	2.81	3.54	4.85	5.51	25yr	4.29	5.30	5.89	7.02	7.89	25yr
50yr	0.49	0.74	0.92	1.33	1.79	2.12	50yr	1.54	2.08	2.40	3.20	3.99	5.62	6.42	50yr	4.97	6.17	6.78	8.05	9.01	50yr
100yr	0.53	0.80	1.01	1.45	1.99	2.40	100yr	1.72	2.34	2.72	3.47	4.50	6.52	7.52	100yr	5.77	7.23	7.81	9.23	10.24	100yr
200yr	0.58	0.88	1.11	1.61	2.25	2.71	200yr	1.94	2.65	3.05	3.92	5.10	7.56	8.83	200yr	6.69	8.49	9.00	10.58	11.68	200yr
500yr	0.66	0.98	1.27	1.84	2.61	3.21	500yr	2.26	3.14	3.59	4.61	6.03	9.22	10.96	500yr	8.16	10.54	10.85	12.69	13.89	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.48	0.58	0.78	0.96	1.13	1yr	0.83	1.10	1.28	1.66	2.10	2.62	2.88	1yr	2.32	2.77	3.46	4.25	4.77	1yr
2yr	0.35	0.55	0.67	0.91	1.12	1.31	2yr	0.97	1.28	1.49	1.93	2.47	3.04	3.39	2yr	2.69	3.26	3.77	4.49	5.13	2yr
5yr	0.44	0.67	0.83	1.14	1.45	1.67	5yr	1.26	1.64	1.89	2.43	3.04	4.02	4.52	5yr	3.56	4.35	5.00	5.91	6.63	5yr
10yr	0.52	0.81	1.00	1.39	1.80	2.04	10yr	1.56	2.00	2.31	2.90	3.61	4.98	5.63	10yr	4.40	5.41	6.21	7.26	8.09	10yr
25yr	0.68	1.03	1.28	1.82	2.40	2.65	25yr	2.07	2.59	2.99	3.67	4.50	6.60	7.52	25yr	5.84	7.23	8.27	9.54	10.54	25yr
50yr	0.82	1.24	1.55	2.22	2.99	3.24	50yr	2.58	3.16	3.64	4.40	5.33	8.18	9.35	50yr	7.24	8.99	10.27	11.75	12.88	50yr
100yr	0.99	1.50	1.88	2.72	3.73	3.95	100yr	3.22	3.86	4.43	5.47	6.31	10.13	11.60	100yr	8.96	11.16	12.77	14.48	15.76	100yr
200yr	1.21	1.82	2.30	3.33	4.65	4.82	200yr	4.01	4.71	5.38	6.58	7.47	12.54	14.41	200yr	11.10	13.85	15.86	17.85	19.29	200yr
500yr	1.57	2.34	3.02	4.38	6.23	6.26	500yr	5.38	6.12	6.98	8.42	9.34	16.63	19.13	500yr	14.72	18.39	21.15	23.53	25.23	500yr

APPENDIX 6.13 AOT APPLICATION & AOT PERMIT

NHDES-W-01-003

ALTERATION OF TERRAIN PERMIT APPLICATION

Services Water Division/ Alteration of Terrain Bureau/ Land Resources Management Check the Status of your Application: <u>www.des.nh.gov/onestop</u>

RSA/ Rule: RSA 485-A:17, Env-Wq 1500

		File I		File N	lumber:				
Administrative	ve Admini		Administrative		Administrative		Check No.		
Only		Only			Only		Amou	int:	
							Initials:		
1. PROJECT LOCATION									
PROJECT NAME: RESIDENT	IAL DEVE	LOPMEN	NT						
ADDRESS: 159 TEMPLE ST	REET								
TOWN/CITY: NASHUA			COUNTY: HILLSBOROU		ROUGH STATE: 1		NH Z	IH ZIP CODE:03060	
TAX MAP: 39	BL	OCK:	I		LOT NUMBER: 31 & 38		UNIT:		
LOCATION COORDINATES:	42.45'44.3	30",-71.2	7'07.72"			LONGITUD		ITM	
2. APPLICANT INFORMATIO	N (DESIRI	ED PERI	MIT HOLDER)		Į				
APPLICANT NAME: ZJBV PF	ROPERTIE	S, LLC		CON	ITACT NAME:	BRIAN THI	BEAUL	Г	
EMAIL: josephequipment@aol.com FAX:				PHONE: 603-641-8608					
ADDRESS: 300 GAY STREE	Т								
TOWN/CITY: MANCHESTER, NH 03103				STATE: N		Н	ZIP CODE: 03103		
3. PROPERTY OWNER INFORMATION (IF DIFFERENT FROM APPLICANT)		1							
PROPERTY OWNER:			CON	NTACT NAME:					
EMAIL:			FAX:		PHONE:	PHONE:			
ADDRESS:									
TOWN/CITY:						STATE:		ZIP CODE:	
4. AGENT INFORMATION									
ENGINEERING FIRM: ALLEN & MAJOR ASSOCIATES,		CIATES, INC.	CON	ITACT NAME:	MICHAEL N	/IALYN	OWSKI, P.E.		
EMAIL: MMALYNOWSKI@ALLENMAJOR.COM		(603) 627-5501		PHONE: (603) 627-5500					
ADDRESS: 400 HARVEY RC	AD								
TOWN/CITY: MANCHESTER					STATE: N	IH	ZIP CODE: 03103		
5. PROJECT TYPE									
	GOLF COL	JRSE		IPAL					
	NHDES	Alteration	of Terrain Bureau www.d	<u>n.gov</u> o , PO Bo es.nh.g	r (603) 271-2147 ix 95, Concord, Nł <u>ov</u>	H 03303-0095			

6	BRIEF PROJECT DESCRIPTION	(PLEASE DO NOT REPLY "SEE ATTACHED")	١
υ.	DIVIEL FROMEOUDESCRIFTION	(FLEASE DO NOT KEFET SEE ATTACHED	,

THE PROPOSED PROJECT CONSISTS OF THE DEVELOPMENT OF TWO CONNECTED MULTI-FAMILY RESIDENTAIL BUILDINGS AND ASSOCIATED PARKING.

7. IF APPLICABLE, DESCRIBE ANY WORK STARTED PRIOR TO RECEIVING PERMIT

N/A

8. REQUIRED QUESTIONS (PLEASE DO NOT LEAVE FIELDS BLANK. IF NOT APPLICABLE, STATE "N/A")	
A. Date a copy of the <i>complete</i> application was sent to the municipality ¹ :08/20/2018. (Attach proof of delivery)	

B. Total area of disturbance: <u>165,318</u> square feet

C.	Additional impervious cover as a result of the project: - square feet (use the "-" symbol to indicate a net reduction in impervious
	coverage). Total impervious cover: <u>127,741</u> square feet.

D. Total undisturbed cover: <u>0</u> square feet

E. Number of lots proposed: 1

F. Total length of roadway: <u>N/A</u> linear feet

G. Select plan type submitted: 🗌 Land Conversion 🖾 Detailed Development 🗌 Excavation, Grading & Reclamation 🗌 Steep Slope

H. Name of receiving waters: MUNICIPAL SYSTEM

Using NHDES's Web GIS OneStop program (<u>www2.des.state.nh.us/gis/onestop/</u>), with the Surface Water Impairment layer turned on, list the impairments identified: <u>Escherichia coli</u> (enter "NA" if no pollutants are listed). For more guidance see: http://des.nh.gov/organization/divisions/water/wmb/tmdl/documents/onestop gis wgc ref guide.pdf

I. 🗌	This project is within 1/4 mi of a designated river (River name:	N/A_		_) AND
	I have notified the Local River Management Advisory Commit	<mark>ttee</mark> by pi	roviding them with a	copy of the complete
	application ¹ , including all supporting materials, on Month:	Day:	Year: (At	tach proof of delivery)

 \boxtimes This project is **not** within $\frac{1}{4}$ mi of a designated river.

J. Name of species identified by the Natural Heritage Bureau as threatened or endangered or of concern: TBD

K.	Cut volume <u>N/A</u> cubic feet and fill vol 100-year floodplain (enter "NA" if not within the floodplain)	lume <u>N/A</u>	_cubic feet within the
L.	Is the project within a Water Supply Intake Protection Area (WSIPA)? Is the project within a Groundwater Protection Area (GPA)? Are the well setbacks outlined in Env-Wq 1508.02 being met?	YES□ NO⊠ YES□ NO⊠ YES⊠ NO□	
	Note: Guidance document titled "Using NHDES's OneStop WebGIS to	Locate Protection Areas" is availa	ble online. For more

details on the restrictions in these areas, read Chapter 3.1 in Volume 2 of the NH Stormwater Manual.

¹ In accordance with Env-Wq 1503.05 (c)(4), *provide proof* that a completed application form, checklist, plans and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed. Env-Wq 1503.05 (c)(4) also requires the applicant to provide proof that a completed application form, checklist, plans and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within 1/4 mile of a designated river. <u>Ridge.Mauck@des.nh.gov</u> or (603) 271-2147

www.des.nh.gov

8. REQUIRED QUESTIONS CONTINUED						
M. Is the project a High Load area in accordance with Env-Wq 1502.26? YES NO						
If yes, specify type of high load land use or activity?						
N. For each type of approval or permit, check "Y the permit number / approval date. Indicate " issued. Check "No" to indicate that the permi if the permit or approval type is not required required, refer to the <u>Land Resources Manag</u>	/es" if th Pending it type is for your j <u>ement V</u>	e permit required project. <u>Veb Pac</u>	t or approva application h d, but has n To determin <u>je</u> .	I type is required for your project an has been filed, but the permit has no ot yet been filed with the Departmer he if other Land Resources Manager	d indicate t yet been nt. Check "N ment Permit	/A" s are
1. Water Supply Approval	ΠY	□N	⊠N/A	Permit number:	Pending	
2. Wetlands Permit	ΠY	ΠN	⊠N/A	Permit number:	Pending	
3. Shoreland Permit	ΠY	ΠN	⊠N/A	Permit number:	Pending	
4. Individual Sewerage Disposal	ΠY	ΠN	⊠N/A	Permit number:	Pending	
5. UIC Registration	ΠY	ΜN	□N/A	Registration date:	Pending	\boxtimes
6. Large/Small Community Well Approval	ΠY	ΠN	⊠N/A	Approval letter date:	Pending	
7. Large Groundwater Withdrawal Permit	ΠY	ΠN	⊠N/A	Permit number:	Pending	
9. ADDITIONAL INFORMATION						
A. If you have had a pre-application meeting with Attach a copy of the meeting minutes.	h AoT st	aff, state	e his or her	name(s): <u>Ridgely Mauck on 05-20-1</u>	9	
B. Will blasting of bedrock be required? YES If yes, standard blasting BMP notes must be http://des.nh.gov/organization/commissioner/	S NC placed c pip/publ	D⊠ If yo on the pl ications/	es, estimate ans, availat /wd/docume	ed quantity of blast rock: cubi ble at: ents/wd-10-12.pdf	c yards.	
If greater than 5,000 cubic yards of blast rock within 2,000 feet of blasting activities, a groun the AoT Bureau for additional detail.	t will be g ndwater	generate monitori	ed and there ing program	e are drinking water supply wells (pu must be developed and submitted	iblic or priva to NHDES.	te) Contact
C. Indicate if the project will withdraw from, or di "Yes", indicate its purpose:	rectly dis	scharge	to, any of t	ne following water sources post-dev	elopment ar	ıd, if
1. Stream or Wetland YES Withdrawal Discharge						
Purpose:	Purpose: NO					
2. Man-made pond created by impounding a stream or wetland YES Vithdrawal Discharge						
Purpose: NO						
Purpose: NO						
10. CHECK ALL APPLICATION ATTACHMENT	S THAT		Y (SUBMIT	WITH APPLICATION IN ORDER L	ISTED)	
LOOSE:			,		,	
Signed application form: <u>des.nh.gov/orgar</u>	nization/	divisions	s/water/aot/	ndex.htm (with attached proof(s) of	delivery)	
Check for the application fee: <u>des.nh.gov/</u>	Check for the application fee: des.nh.gov/organization/divisions/water/aot/fees.htm					
\boxtimes Color copy of a USGS map with the prope	utes, if y	ou had	a pre-applic	= 2,000 scale) ation meeting with AoT staff.		
BIND IN A REPORT IN THE FOLLOWING ORDER:						
Copy of the signed application form & application checklist (des.nh.gov/organization/divisions/water/aot/index.htm)						
\boxtimes Copy of the USGS map with the property boundaries outlined (1" = 2.000' scale)						
Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points						
☑ Web GIS printout with the "Surface Water Impairments" layer turned on - <u>www2.des.state.nh.us/gis/onestop/</u> ☑ Web GIS printouts with the AoT screening layers turned on - www2 des state.ph.us/gis/onestop/						
NHB letter using DataCheck Tool – www.	nhdfl.org	/about-f	orests-and-	lands/bureaus/natural-heritage-bure	au/	
The Web Soil Survey Map with project's w	vatershe	d outline	ed – <u>websoi</u>	<u>lsurvey.nrcs.usda.gov</u>		
\square Photographs representative of the site		Joundan)		
Groundwater Recharge Volume calculatio	ns (one	workshe	eet for each	permit application):		
des.nh.gov/organization/divisions/water/ad	ot/docun	nents/br	<u>np_worksh.</u> m) [.]	XIS		
des.nh.gov/organization/divisions/water/ac	ot/docun	nents/br	np worksh.	xls		
Pidge Mousk@doe ph gov or (602) 274 2147						
NHDES Alteration	of Terrai	n Bureau <u>www.d</u>	, PO Box 95, 0 es.nh.gov	Concord, NH 03303-0095		

10. CHECK ALL APPLICATION ATTACHMENTS T	HAT APPLY (SUBMIT WITH APPLICATION IN ORDE	R LISTED)
 Drainage analysis, stamped by a professional Riprap apron or other energy dissipation or st Site Specific Soil Survey report, stamped and done in accordance with the Site Specific So SSSNNE Special Publication No. 3. Infiltration Feasibility Report (example online) Registration and Notification Form for Storm V systems only, including drywells and trencher (<u>http://des.nh.gov/organization/divisions/wate</u> Inspection and maintenance manual with, it Source control plan 	I engineer (see Application Checklist for details) tability calculations I with a certification note prepared by the soil scientist th bil Mapping standards, <i>Site-Specific Soil Mapping Stand</i> Water Infiltration to Groundwater (UIC Registration-for u es): er/dwgb/dwspp/gw_discharge) f applicable, long term maintenance agreements	at the survey was lards for NH & VT, nderground
PLANS:		
 ☑ One set of design plans on 34 - 36" by 22 - 24 ☑ Pre & post-development color coded soil plan ☑ Pre & post-development drainage area plans details) 	ecklist for	
100-YEAR FLOODPLAIN REPORT:		
All information required in Env-Wq 1503.09, s		
REVIEW APPLICATION FOR COMPLETENESS INCLUDED WITH SUBMITTAL.	S & CONFIRM INFORMATION LISTED ON THE APPL	ICATION IS
11. REQUIRED SIGNATURES		
APPLICANT OR 🛛 AGENT:		
Michael Malynaushi SIGNATURE	Michael Malynowski PRINT NAME LEGIBLY	06/05/2019 DATE
OWNER OR OWNER'S AGENT (IF DIFFERENT FROM APPLICANT):		
SIGNATURE	PRINT NAME LEGIBLY	DATE
By initialing here, I understand that in accordance wapproval, the applicant shall submit a copy of all approCD.	vith Env-Wq 1503.20(e), within one week after permit oved documents to the department in PDF format on a	mam

ATTACHMENT A: ALTERATION OF TERRAIN PERMIT APPLICATION CHECKLIST

Check the box to indicate the item has been provided or provide an explanation why the item does not apply.

DESIGN PLANS

☐ Plans printed on 34 - 36" by 22 - 24" white paper
PE stamp
Wetland delineation
Temporary erosion control measures
Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and non-residential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
Pre-existing 2-foot contours
Proposed 2-foot contours
Drainage easements protecting the drainage/treatment structures
Compliance with the Wetlands Bureau, RSA 482- A <u>http://des.nh.gov/organization/divisions/water/wetlands/index.htm</u> . Note that artificial detention in wetlands is not allowed.
Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B. http://des.nh.gov/organization/divisions/water/wetlands/cspa
Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
Check to see if any proposed ponds need state Dam permits. <u>http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf</u>
DETAILS
Typical roadway x-section
Detention basin with inverts noted on the outlet structure
Stone berm level spreader
Outlet protection – riprap aprons
A general installation detail for an erosion control blanket
Silt fences or mulch berm
Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
Hay bale barriers
Ridge.Mauck@des.nh.gov or (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095 www.des.nh.gov

Gravel construction exit

The treatment BMP's proposed

Any innovative BMP's proposed

CONSTRUCTION SEQUENCE/EROSION CONTROL

○ Note that the project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and Chapter Agr 3800 relative to invasive species.

Note that perimeter controls shall be installed prior to earth moving operations

Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site)

Note that all ditches and swales shall be stabilized prior to directing runoff to them

Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade

Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade

Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall

Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized

Note the definition of the word "stable"

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved
- A minimum of 85 percent vegetated growth has been established
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed
- Or, erosion control blankets have been properly installed.

○ Note the limit of time an area may be exposed Example note: All areas shall be stabilized within 45 days of initial disturbance

Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book; however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified)

Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.

Ridge.Mauck@des.nh.gov or (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095 www.des.nh.gov

- After November 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.
- Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable". This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

Please double-side 8 ¹/₂" x 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

PE stamp

Rainfall amount obtained from the Northeast Regional Climate Center-<u>http://precip.eas.cornell.edu/</u>. Include extreme precipitation table as obtained from the above referenced website.

Drainage analyses, in the following order:

- Pre-development analysis: Drainage diagram
- Pre-development analysis: Area Listing and Soil Listing
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year
- Pre-development analysis: Full summary of the 10-year storm
- Post-development analysis: Drainage diagram
- Post-development analysis: Area Listing and Soil Listing
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year
- Post-development analysis: Full summary of the 10-year storm

Review the Area Listing and Soil Listing reports

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided
- There is the same or less HSG A soil area after development (check for each HSG)
- There is the same or less "woods" cover in the post-development
- Undeveloped land was assumed to be in "good" condition
- The amount of impervious cover in the analyses is correct

Note: A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Do these numbers make sense?

Check the storage input used to model the ponds

Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped

Check the outlet structure proposed and make sure it matches that modeled

- Check to see if the total areas in the pre and post analyses are same
- Confirm the correct NRCS storm type was modeled (Coos, Carroll & Grafton counties are Type II, all others Type III)

PRE AND POST-DEVELOPMENT DRAINAGE AREA PLANS
□ Plans printed on 34 - 36" by 22 - 24" on white paper
Submit these plans separate from the soil plans
A north arrow
A scale
Labeled subcatchments, reaches and ponds
A clear delineation of the subcatchment boundaries
Roadway station numbers
Culverts and other conveyance structures
PRE AND POST-DEVELOPMENT COLOR-CODED SOIL PLANS
11" x 17"sheets suitable, as long as it is readable
Submit these plans separate from the drainage area plans
A north arrow
A scale
Name of the soil scientist who performed the survey and date the soil survey took place
2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features
Delineation of the soil boundaries and wetland boundaries
Delineation of the subcatchment boundaries
Soil series symbols (e.g., 26)
A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor)
The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray)
Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the following are common exceptions/additions:
Drainage report is not needed if site does not have off-site flow.
5 foot contours allowed rather than 2 foot.
□ No PE stamp needed on the plans
Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.
Add reclamation notes.
See NRCS publication titled: Vegetating New Hampshire Sand and Gravel Pits for a good resource, it is posted online at: http://des.nh.gov/organization/divisions/water/aot/categories/publications .

Ridge.Mauck@des.nh.gov or (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095 www.des.nh.gov